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Abstract—NVMe-based SSDs are in huge demand for Big
Data analytics owing to their extremely low latency and high
throughput for both read and write operations. Their inherent
parallelism in request processing makes them ideal to be used in
virtualized environments, where sharing of resources is a given.
Given the shared resource-driven ideology of cloud environments,
it is imperative to design middleware which can provide some
guarantee of service to applications. In this paper, we show
how such QoS can be provided for NVMe SSDs in virtualized
environments. Our contributions are threefold: (1) design of
accurate NVMe emulation mechanisms in QEMU to provide QoS
schemes, (2) theoretical modeling of arbitration mechanisms for
assisting in SLA provisioning, and (3) proposing designs in Intel
SPDK to seamlessly use the hardware-based QoS provided by
NVMe. We provide a complete case for our designs and validate
them through thorough experimental evaluation. We show that
Deficit Round Robin (DRR) as a hardware-based arbitration
scheme is more suited for providing bandwidth guarantees for
NVMe SSDs. Our evaluations show that by combining our
proposed QoS-aware NVMe emulator in QEMU and enhanced
SPDK runtime, we can achieve I/O bandwidth SLA guarantees
in an application oblivious manner.
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I. INTRODUCTION

The architecture of enterprise clouds is rapidly changing.

Novel hardware and software innovations constantly drive the

evolution of cloud environments. The Non-Volatile Memory

express (NVMe) [1] standard is a recent innovation which

has significantly impacted research in storage systems. The

standard allows flash storage devices such as SSDs to achieve

profound improvements in latency and throughput. NVMe-

based SSDs have been emerging as the latest storage technol-

ogy bridging the dreaded performance gap between hard disks

and memory. These new devices are built for extremely low

latency and achieving high degrees of parallel I/O. This makes

them ideal to be used in cloud environments, where sharing

of resources is a given.

In cloud environments, users expect a certain guarantee of

service. Considering the new NVMe technology being intro-

duced in enterprise clouds, it is only natural to ask whether a

similar guarantee of service can be provided for this emerging

hardware. In fact, this issue has been addressed to some extent

in the NVMe standard itself. The standard includes provisions

to enable request arbitration through mechanisms which are to

be provided by hardware. However, there is limited knowledge

on using these provisions to enable service guarantees in cloud

environments. Prior research [2]–[10] has mostly focussed on
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software-based provisions for service guarantees. While pre-

vious approaches [11], [12] have considered using such hard-

ware provisions to provide some Quality of Service (QoS) to

users, their approaches are not holistic. The designs proposed

do not provide a complete solution for providing Service Level

Agreement (SLA) based guarantees to users. For providing

such a solution, there are two key requirements. First, the

SLA provisioning should be completely application oblivious,

i.e., it should be completely handled by the cloud provider

based on the SLA negotiated by the user. Second, there must

be mechanisms in place which allow for the provisioning of

SLAs without violations. Achieving these requires a holistic

approach which we propose in this paper. We show how

existing runtimes can be modified for application oblivious

QoS provisioning. We also theoretically model the arbitration

mechanism available in NVMe and discuss how the model can

be used for SLA mapping and provisioning.

NVMe SSDs are still considered as emerging hardware.

While costs have been rapidly declining in recent years,

they are still high enough to prevent wide-scale adoption in

cloud environments [13]–[15]. Having a system which can

provide NVMe device emulation can prove to be very useful.

Emulation allows for testing NVMe related code without the

need for buying expensive hardware. In addition, emulation

also allows for approximate performance modeling of such

applications. Existing schemes for NVMe emulation do not

provide any mechanisms to test and evaluate the arbitration

mechanisms available in the standard. Moreover, no flash

device has implemented weighted arbitration schemes yet [10].

Thus, we propose designs for accurate modeling of QoS

schemes in the NVMe part of Quick Emulator (QEMU) [16],

[17]. With this solution, cloud providers can not only verify

their middleware and schedulers, but can also use it for

performance modeling and benchmarking.

To summarize, the main contributions of this paper are as

follows:

• Design of QoS-aware NVMe emulator which provides

support for weighted round robin and deficit round robin

arbitration

• Theoretical modeling of arbitration schemes with queuing

theory

• Extension of Storage Performance Development Kit

(SPDK) runtime to allow for application oblivious SLA

provisioning

Our evaluations show that by combining our QoS-aware

NVMe emulator and enhanced SPDK runtime, we can achieve
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Figure 1. Comparison of software overhead for I/O submission and
completion with NVMe SSDs measured using SPDK overhead benchmark.
Note the difference in scale between the two graphs.

I/O bandwidth SLA guarantees in an application oblivious

manner. We also observe that our QoS-aware emulator can

deliver similar or better performance as compared to the

existing emulator in QEMU. To the best of our knowledge,

our proposed emulator is the first NVMe emulator to offer

support for QoS.

The rest of this paper is organized as follows. Section II

presents the motivation behind our work, Section III discusses

our proposed approach for QoS-aware NVMe emulation in

QEMU. Section IV presents a theoretical modeling of arbi-

tration schemes in NVMe, Section V presents a QoS-aware

SPDK runtime solution, and Section VI discusses NVMe and

Flash specific aspects related to our work. Section VII studies

related work and Section VIII concludes the work.

II. MOTIVATION

In this section, we discuss the motivation behind our work.

A. Time for a change
In this subsection, we compare the performance of the Linux

NVMe driver and Intel SPDK and discuss the benefits of

shifting to SPDK. Before comparing their performance, we

briefly introduce SPDK.

Intel SPDK. Intel SPDK [18] is a userspace library built

for applications with high-performance storage requirements.

SPDK moves all necessary drivers to userspace and operates

in polling mode, thereby enabling high-performance access

to storage. In addition to legacy storage protocols, SPDK

offers support for the NVMe standard, including NVMe over

Fabrics [19]. For processing requests over NVMe, the user

should create a queue pair (QP), which is a set of submission

and completion queues. I/Os for each QP can be submitted

and processed in parallel. Synchronization within a QP is left

for the user to handle. In general, each application thread

requiring I/O is recommended to create a separate QP, allowing

maximum parallel processing and eliminating the need for

synchronization. Processing of I/O operations is completely

asynchronous. Applications need to explicitly ask the SPDK

runtime to poll the completion queues. This asynchronous

operation allows for complete or partial overlap of I/O and

application processing. The SPDK design solves most of

the performance related issues that plague the Linux NVMe

driver [20].

Comparison of POSIX and SPDK. To determine the

best driver to use for NVMe-based applications, we conduct
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Figure 2. Comparing the CPU Overhead of POSIX and SPDK with NVMe
SSDs. POSIX and SPDK achieve nearly the same total CPU usage (top two
lines): The high polling overhead of SPDK is offset by the additional software
overhead in POSIX.

an experiment to measure the software overhead of request

submission and completion for SPDK and POSIX. Our testbed

consists of one node with a 8 core, 16 thread sandy bridge

CPU with 32GB DRAM and an Intel P3700 NVMe SSD.

We use CentOS 7.1 with the 4.9 Linux kernel. We run a

random read workload with a queue depth of one (to nullify the

effects of queuing delay). Timestamps are collected before and

after the submission and completion calls; since the calls are

asynchronous, this gives us the software overhead. Figure 1

shows the result of this analysis. We observe that the total

software overhead for POSIX is very high compared to SPDK.

In fact, for a 4k write, the software overhead is almost 30% of

the request processing time (∼2us v/s ∼7us). Next-generation

Intel Optane SSDs have even lower latency, further increasing

the software overhead [21]. The Linux NVMe driver suffers

from some basic flaws [22] including interrupt-based process-

ing and context switches. In terms of latency, SPDK clearly

has much better performance (629.1 ns v/s 6465.9 ns overhead

for 128k I/O; more than 10x improvement). For both POSIX

and SPDK, the submission latency increases with message

size. This increase is minimal for SPDK, where the increase in

latency can be attributed to gathering the list of pages that hold

the request. For POSIX, the increase in latency is significantly

higher as it involves a context switch. Completion latency is

constant for SPDK (around 260 ns), only involving polling

the completion queue. Overall, SPDK latency is negligible

compared to processing latency. This implies that the SSD

throughput is no longer limited by the software overhead.

We also measure the CPU overhead while running the

random read workload, as shown in Figure 2. SPDK has higher

user CPU overhead, while POSIX has higher system CPU

overhead. SPDK uses polling mode to process I/O completions

resulting in increased user CPU usage. POSIX driver is built

into the kernel, hence a higher system CPU usage is expected.

Interestingly, the total CPU usage for both POSIX and SPDK

is almost the same. The high polling overhead in SPDK is

offset by the software overhead in POSIX. Thus, while the

CPU usage for both is similar, SPDK is able to deliver much

better performance.

These experiments point to a clear conclusion; for low

latency applications or cloud environments requiring highly

parallel access to storage, SPDK should be the obvious choice.

While SPDK provides the best performance, it does not offer

compliance with the POSIX standard. It offers its own set

of low-level APIs for accessing NVMe devices. Applica-
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tions need to be modified to enable storage access using

SPDK. While application developers are in general reluctant

to modify existing production applications, we believe that

the performance-related benefits are sufficient to encourage

migration from POSIX to SPDK. In fact, many existing appli-

cations and frameworks have already embraced this change

and moved to SPDK for accessing storage. For example,

OpenStack Ceph [23] has recently announced support for

SPDK and Facebook’s RocksDB [24] key-value store has

been modified to run over it. We argue that other applications

and frameworks will follow suit and SPDK is the way to go

moving forward.

B. QEMU NVMe Emulation

NVMe SSDs are still considered as emerging hardware.

Although NVMe SSDs have been commercially available for

several years now, their cost is a significant barrier to their

adoption in large-scale cloud environments. We believe that

over time, as the performance of SSDs increases and their

cost decreases, their adoption will see an exponential increase.

While it is important to design runtime and middleware that

can take advantage of the NVMe standard, it is also important

to provide mechanisms to emulate NVMe devices. Emulation

allows for testing NVMe related code without the need for

buying expensive hardware. In addition, emulation also allows

for approximate performance modeling of such applications.

There exist many solutions that provide the ability to

emulate NVMe devices. The most robust and stable of these

is provided as part of QEMU. QEMU [25] is a popular

open-source hypervisor for hardware virtualization. QEMU

introduced NVMe emulation support a few years ago which

has now developed into a stable tool for NVMe device virtu-

alization. The reason that we chose QEMU for this purpose is

that it is a popular and well-known framework for hardware

virtualization and it already includes mechanisms to virtualize

Memory Mapped I/O (MMIO), block I/O, hardware interrupts

(e.g. MSI-X), and PCIe devices. This makes it perfect for

emulation of NVMe devices.

The working of the QEMU NVMe emulator is as follows.

QEMU has a main thread which is used for processing

interrupts. This thread is also used to process NVMe related

requests in the emulator. There is a timer interface provided

by QEMU which is used by other QEMU subsystems. Timers

provide a mechanism to call a given routine (a callback), after

a time interval has elapsed. Timers are handled by the main

thread. The main thread is essentially a loop which processes

interrupts, checks timers, and processes appropriate callback

functions as and when timers expire. The NVMe emulator

makes heavy use of timers for request submission. Each

submission queue that is created has a timer associated with it.

The callback function of the timer executes the command sub-

mission procedure. The actual command processing is handled

by the Linux aio system. On submission queue initialization

and upon receipt of any request, the emulator sets a 500 ns

timer for that queue. After the timer expires, the main thread

runs the callback function and submits requests for the queue.
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Figure 3. (a) Comparison of random read throughput for Intel P3700 SSD
and QEMU NVMe Emulator. Results taken with SPDK fio benchmark with
queue depth of 128, (b) Demonstrating the lack of QoS Support in QEMU
NVMe Emulator. Results taken with synthetic applications each using a queue
depth of 128 and 4KB I/Os.

The arbitration burst setting defines the maximum number of

commands that can be submitted in one round from a queue. In

case additional requests are pending after request submission,

the callback function resets the timer so that the remaining

requests can be processed. It is important to note that timers

are required here because everything is processed by the main

thread. Request completion is also handled by the main thread

in the form of a callback function invoked upon completion

of the Linux aio. For the actual I/O, QEMU initially writes

all data in memory and lazily flushes everything to a backup

file located on physical disk. This process is sufficient to

emulate the working of an NVMe device. To determine how

well QEMU emulates the performance of NVMe hardware,

we conduct some performance evaluations.

We first evaluate the performance of the virtualized NVMe

device using QEMU and compare it to that of an Intel P3700

SSD. As we can observe from Figure 3(a), the I/O throughput

of QEMU is much lower than actual hardware for small I/O

sizes. This is because the additional software overhead of

device emulation significantly impacts the latency of small

I/Os. This is especially true since the latency of small I/O sizes

is extremely low. In addition, the P3700 has 18 flash channels

to process requests concurrently. In fact, even within a channel,

chip, die, and plane level parallelism can be used. This

results in notable throughput improvement for small requests.

However, large I/O performance is better with QEMU than

actual hardware. Since QEMU uses memory for storing data,

the high memory bandwidth of main memory leads to better

performance for large I/O sizes. We are able to achieve up to

16 GB/s bandwidth for a 1 MB I/O. The difference between

QEMU and the SSD is under acceptable levels for large I/O

sizes, but not for small sizes. However, the ability to run any

NVMe workload makes QEMU a viable and useful emulation

tool for NVMe. We do not focus on improving the emulator

to accurately model the performance characteristics of NVMe

devices, but rather on accurate modeling of the command
processing and arbitration mechanisms. This will allow us

to provision service guarantees using the improved QEMU

emulator.

C. The need for QoS-aware emulation and runtime
Quality of Service (QoS) is an extremely important part

of the cloud computing paradigm. In fact, this is one of the
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primary reasons for the popularity of cloud computing. Most

cloud providers these days offer Service Level Agreements

(SLAs) to their clients as a basic way of achieving QoS.

In the context of NVMe storage, it is paramount to have a

design that provides some guarantee of service (e.g., latency

or bandwidth) to applications or VMs depending on the service

granularity. NVMe provides hardware-based mechanisms for

command arbitration. Schemes like round robin and weighted

round robin arbitration (WRR) (see Section III-A) have been

included in the NVMe standard, while NVMe SSD vendors

are free to implement vendor specific arbitration mechanisms.

However, none of these schemes have been implemented in

commercially available SSDs.

While the QEMU NVMe emulator supports the entire

NVMe command set, the hardware-based weighted round

robin arbitration mechanism specified in the NVMe standard

is not supported. Cloud providers providing service guarantees

for storage might want to test their scheduling solutions using

hardware virtualization. In this context, having an emulator

for NVMe devices which can provide command arbitration

mechanisms as described in the standard can prove to be

extremely useful. We believe that making such a solution

available will tremendously benefit cloud providers in design-

ing scheduling solutions. To demonstrate the importance of

QoS, we conduct a simple experiment. We run two separate

applications using SPDK over the QEMU NVMe emulator,

one having high priority and the other low priority. We enable

the WRR scheme in SPDK to simulate a QoS scenario. These

applications use the high priority and low priority submission

queues, respectively. Both of these applications submit back-

to-back 4k I/O requests. In the beginning, only the high-

priority job is running. At the 10th second, the low priority

job is run. Figure 3(b) shows the result of this experiment. It

can be observed that the low priority job significantly impacts

the performance of the high priority job. In fact, both jobs

experience the same I/O throughput, thus confirming that

QEMU does not provide any support for WRR arbitration

mechanism. For testing and evaluating any scenario which

expects a guarantee of service for storage, this emulator will

fall short of expectations. To address these issues, we propose a

QoS-aware NVMe emulator, the details of which are presented

in the next section.

D. Summary
So far, we have made the following observations:

1) SPDK provides the best performance for NVMe devices

2) QoS is an important feature in cloud environments

3) The existing emulator in QEMU does not provide any

kind of service guarantees

These observations lead us to conclude that there is a need

for QoS-aware emulation and runtime. The SPDK runtime

provides some mechanisms to exploit the WRR arbitration

scheme in NVMe. However, the configuration of this scheme

is left to the discretion of the user. Thus, SLA provisioning

cannot be application oblivious. We envision a cloud envi-

ronment where SLAs can be met in an application oblivious

manner to provide expected features to users. Clearly, existing

emulation and runtime schemes fail to satisfy this vision. In

this context, we propose a QoS-aware NVMe emulator over

QEMU and a QoS-aware SPDK runtime. Our goal is to design

solutions which can provide I/O service guarantees in NVMe

clouds. Sections III and V provide additional details about

these designs.

III. QOS-AWARE NVME EMULATION

In this section, we describe our proposed design for QoS-

aware NVMe emulation. We first briefly describe the Weighted

Round Robbin and Deficit Round Robbin (DRR) arbitration

scheme, then present our solution for implementing these

schemes in QEMU, and finally demonstrate via experimental

evaluation the superiority of our solution over the existing

NVMe emulation in QEMU.

A. WRR arbitration
The WRR arbitration mechanism in the NVMe standard

provides a useful mechanism to implement QoS support in

cloud middleware. The biggest advantage of this mechanism

is that it is implemented completely in hardware resulting in

low latency arbitration and reduced complexity of drivers and

runtimes. This mechanism works as follows. There are three

different priority classes for NVMe submission queues, high,

medium, and low. Each class of priority is assigned a numer-

ical weight. The NVMe controller processes commands for

submission queues in order of their priorities. The maximum

number of commands that can be processed for queues of a

certain priority in one arbitration round is determined by the

weight of that priority class. For a single submission queue,

the maximum number of commands that can be processed

in one arbitration round is determined by the arbitration

burst setting. By adjusting the weights of different classes of

priority, the desired level of QoS can be achieved. The current

NVMe emulator in QEMU does not provide support for the

WRR arbitration mechanism. In this section, we describe our

proposed design for a QoS-aware NVMe emulator.

B. DRR arbitration
While the WRR scheme is efficient in providing a guarantee

of throughput, it requires the sizes of requests to be fixed or

previously known. Otherwise, applications with different sized

requests will result in a higher than intended weight for large

requests. In this context, significant research has been done to

provide solutions which can provide optimal bandwidth QoS

despite request size variation. Schemes like deficit round robin

(DRR) and weighted fair queuing (WFQ) are popular models

widely used in networking. Both DRR [26] and WFQ [27]

can provide bandwidth guarantees. However, WFQ requires

O(log(n)) time to process each request, while DRR only

requires O(1), where n is the number of priority classes.

Even though there are just three priority classes (as defined

in the NVMe standard), DRR is simpler and satisfies our

requirements for QoS. DRR is a modification of WRR, where

instead of giving each request equal cost, its given a cost equal

to its size. This effectively ensures that the overall bandwidths

for each priority class are in the ratio of their weights. We
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believe that DRR is an effective alternative to WRR which can

provide better QoS with the same overhead. We implement the

DRR scheme in the QEMU NVMe emulator and show that it

is much more effective in providing bandwidth guarantees to

cloud users than WRR.

C. Designing arbitration schemes in QEMU
For basic NVMe emulation, the existing designs in QEMU

can be re-used. However, for providing QoS, the software-

based arbitration mechanism in QEMU needs to be redesigned.

Existing emulation design. Figure 4 shows the command

submission process for the existing emulator. The working can

be detailed by the following steps: 1 The host puts an I/O

request in the submission queue, 2 The host rings the queue

doorbell, 3 This triggers an interrupt which is processed by

the QEMU main thread, 4 The QEMU main thread updates

the timer of the submission queue, and 5 The timer expires

and the main thread submits Linux aios for each request.

The default design uses the QEMU main thread to execute

the entire I/O processing pipeline. The fundamental flaw with

this approach is that as soon as a command is placed in the

submission queue, the main thread will start processing it.

Submitting an I/O request involves ringing a doorbell which

generates an interrupt. This interrupt is also handled by the

QEMU main thread. Thus, at one time, only one command can

be in any submission queue. This design allows no conception

of QoS and is fundamentally different from the way commands

are processed in an actual NVMe SSD.

Design Considerations. Emulation is an effective tool for

testing the performance and functionality of hardware. A

good emulation requires accurate modeling of hardware, i.e.,

the software implementation should mimic the behavior of

hardware. In addition, specially while proposing new hardware

logic, the functionality, complexity, and memory usage should

be kept as minimal as possible. This allows for cost savings

and latency benefits. In this context, we emulate arbitration

schemes using simplistic space efficient data structures. Each

priority class is assigned a circular linked list for holding

pointers to the submission queues in the priority class. In

addition, 8 bit unsigned integers are used to store remaining

and pre-defined weights for each priority class which will map

to hardware registers or dedicated buffers on device memory

for each queue. After each arbitration round, the remaining

weights are updated to the pre-defined weights. In addition, a

single bit is kept for each submission queue to indicate if it
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emulation

has a pending request. This allows for efficient arbitration by

allowing the controller to quickly skip over empty queues. We

believe that this design closely mimics hardware behavior. We

now describe our arbitration scheme designs in QEMU.

Proposed Design. For emulating the NVMe device in a

more realistic manner, we introduce a dedicated thread for

executing the functions of the NVMe controller. We also make

sure that data structures shared with the QEMU main thread

are locked using a mutex before access. In addition, to allow

for software-based arbitration, we introduce a circular linked

list for each priority class. Each submission queue is added

to the appropriate linked list when it is created. We maintain

just one head pointer for each linked list which points to the

submission queue that should be used next by the controller

for command arbitration. The controller processes commands

from each priority class one by one. For each priority class,

the controller will use the appropriate linked list and start

processing commands for the queue pointed to by the head

pointer, moving the pointer each time a queue is serviced.

It will continue processing commands for the priority class

until either all queues have been serviced or the total cost

of commands processed is equal to the weight of the priority

class. Thus in one arbitration round, all priority classes will

be served, but the maximum cost of commands that can be

processed for each class is equal to its weight.

Figure 5 shows the command submission process for the

proposed emulator. The following steps describe the complete

process: 1 The host submits requests directly to the submis-

sion queues, 2 The host then rings the doorbell, 3 This

generates an interrupt which is handled by the QEMU main

thread, 4 The NVMe controller thread first uses the high

priority linked list, 5 It picks up each submission queue with

an outstanding request and submits Linux aios for requests,

6 Controller thread moves onto next submission queue, and

7 After processing requests for all submission queues in a

priority level, the controller moves to next priority linked list.

The NVMe controller thread in parallel continuously scans

the circular linked lists for each priority class. Whenever

it finds pending requests, it submits a Linux aio operation
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Figure 6. (a) Comparison of random write throughput for QEMU NVMe
Emulation, (b) Comparison of random read throughput for QEMU NVMe
Emulation. Results for both taken with SPDK fio benchmark with queue depth
of 128 and 4k I/O Size.

for each request while ensuring WRR/DRR arbitration. Our

NVMe controller thread can execute independently of the

QEMU main thread. This allows the request submission and

processing to proceed in parallel, thereby allowing for the

possibility of multiple outstanding requests in submission

queues. This emulates the actual behavior of an NVMe SSD

more accurately. Applications submit and place a request in the

submission queues independent of the processing of requests

by the NVMe hardware. Thus, our solution provides a better

emulation of NVMe hardware.

There are many possible solutions for designing arbitration

in QEMU. For example, the QEMU aio interface can be used

to process commands for each submission queue parallelly. We

chose our design with the goal of emulating the NVMe device

behavior as accurately as possible with minimal overhead.

In our design, we use just one additional thread, but the

arbitration mechanism and NVMe controller are precisely

emulated. Our experimental analysis also confirms this claim.

D. Comparison with existing emulator
We now present some results comparing the performance

of our proposed solution with QEMU. Figure 6(a) shows

a comparison of the write throughput obtained from the

fio benchmark. We observe some interesting trends here. In

general, the WRR and DRR schemes show better or similar

performance than the default emulator. Since we introduced

an additional thread dedicated to processing NVMe requests,

throughput for most I/O sizes is improved. However, for

8k and 16k sizes, the overheads of threading, data transfer

between cores, and software-based arbitration lead to slightly

lower performance than QEMU. We conclude that our solution

is similar to QEMU in emulating the performance of NVMe

SSDs.

We also evaluate the performance of our solution using a

multi-client benchmark. Each client uses a separate submission

and completion queue for request processing. This design

allows for completely lockless and synchronization free I/O

processing, leading to good scalability. Figure 6(b) shows

the read throughput for different number of client threads.

The host node has 16 threads, thus we go up to 16 client

threads. We observe a constant increase in the throughput

with increasing client threads for the default emulator. DRR

throughput is lower than WRR for all cases. We find that DRR

needs additional arbitration rounds for processing requests

since the cost of each request is higher than WRR. For our

emulator, the throughput is always higher than the default.

However, for 8 and 16 client threads we notice a slight

decrease in throughput. We introduce a separate thread to

emulate the NVMe controller which competes with client

threads for resources when simulating a large number of

clients. The decrease in throughput is minimal and we believe

that a scenario where continuous I/Os are being submitted

from each core will be rare.

IV. PERFORMANCE MODELING OF ARBITRATION

SCHEMES

In this section, we model the performance of the WRR and

DRR arbitration schemes.

A. Performance modeling
In the previous section, we presented our QoS-aware NVMe

emulator design. To allow cloud providers to fully utilize this

new tool, it is necessary to provide a model for performance

prediction. This will allow for accurate SLA provisioning with

minimal violations.

Symbol Description
h/m/l high/medium/low priority class weight

λ input request rate

γ average SSD throughput

μ SSD processing rate

ρ queue utilization

p SSD parallelism

q queue depth

a average request latency

Table I
SYMBOLS USED AND THEIR DESCRIPTIONS

We first model the WRR throughput. The presence of

many varying situations and variables makes the performance

modeling of WRR challenging. For simplicity, we assume

that the average I/O size for each priority class is the same.

For each priority class, the maximum commands processed

in one round will be equal to its weight. However, in case

the submission queues in a priority class do not have more

commands than its weight, other priority classes will be able to

get higher throughput. Thus, the minimum throughput for each

priority class should be in the ratio of their weights. Assuming

that γ is the average throughput the NVMe SSD can deliver

and h, m, and l are the weights of the corresponding priority

classes, the minimum throughput for the high priority class

can be calculated out as

γh ≥ h

h+m+ l
× γ (1)

Minimum throughput for other priority classes can be

calculated similarly. For estimating the actual throughput of

each priority class, queuing theory can be used. While each

priority class can have multiple queues, they can be considered

to constitute one combined big queue. If λh, λm, and λl are

the input request rates for the respective priority classes, we

know from queuing theory that γ = λ, i.e. output rate is equal

to input rate if input rate is not greater than the processing

rate μ. This is generally true for NVMe since the command

submission will fail if the submission queue is full. The input
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rate will then automatically adjust to be equal to the output

rate. For a general case, the weights in Equation 1 need to

be multiplied by the utilization (ρ) of each priority class so

that we can determine the average commands processed from

each class in one arbitration round. The utilization of each

class can be computed as λ
γ using queuing theory. Thus, the

average throughput for each class can be calculated as

γh = min(λh,
h

h+ ρmm+ ρll
× γ) (2)

It is easy to see that if we do not submit any requests in the

medium and low priority classes, i.e ρm and ρl are zero, then

γh will be γ or the complete throughput of the SSD as long

as the input rate λh is high enough to keep the SSD busy. The

utilization of each priority class (ρ) is the ratio of its input rate

to max throughput. Utilization determines how many requests

are available to be processed for the priority class in one

arbitration round. A utilization of one means that the number

of requests available for processing is equal to the weight

of the priority class. For DRR, replacing γ with the average

SSD bandwidth should suffice since it is bandwidth based. In

addition, no guarantees on the request size are required.

To calculate the latency for each operation of a priority

class, we need to account for two factors. First, queuing delay

and second, internal parallelism in the SSD. Queuing delay

accounts for the time a request waits to be serviced by the

SSD. In general, a request in a particular priority class must

wait for requests before it in its own class as well as requests

in other priority classes to finish. Assuming requests take an

average of time of a to complete, p requests can be submitted

in parallel, and each priority class can have a maximum of q
outstanding requests, we can calculate the maximum latency

for the high priority queue as

tmax =
q

h
× h+ ρmm+ ρll

p
× a (3)

This equation should hold true for both DRR and WRR as

long as the average request size for all classes is the same.

Otherwise, a will not remain a constant. The parallelism p
of the SSD can approximately be estimated based on the

number of flash chips it has. This is assuming that requests are

uniformly distributed over the logical address space. For work-

loads with different request distributions, conflicts between

requests will likely reduce the parallelism. Write workloads

will be adversely affected by garbage collection activities fur-

ther reducing the parallelism. Assuming no conflicts between

requests, the effective parallelism can be derived by dividing

the number of flash channels by the write amplification factor.

B. Model Validation

To prove the validity of our proposed model, we run

experiments on an NVMe SSD to confirm the latency and

throughput characteristics under different load conditions. We

use the same testbed as described in Section II for our

experiments. However, as mentioned before, there does not

exist an actual flash device offering either WRR or DRR
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Figure 7. Model Validation: actual and predicted high priority class
throughput and latency with varying low priority queue utilization (ρl)

arbitration in hardware. Hence, we build a thin software layer

over SPDK, providing software-based queues offering DRR

and WRR schemes. This layer is designed to be light weight

with minimal locking to ensure hardware-like performance.

To validate our model, we run a random read benchmark with

three threads using the three separate priority classes. DRR

weights are set to (32k, 64k, 128k) and each thread submits

32k I/O requests. Each priority class is assigned a separate

hardware queue, although, request submission and completion

is handled by a single thread to ensure DRR compliance. We

vary the utilization of the low priority thread and measure

the throughput and latency of the high priority thread. For

our model, we estimate γ and a/p through empirical analysis.

Both of these parameters can be estimated by running a simple

multi-client benchmark with one thread per physical core

utilizing a separate hardware NVMe queue. γ was found to

be around 240k while a
p was around 81 μs. We compare these

results with those predicted by our model. This comparison

is presented in Figure 7. Figure 7(a) shows the high priority

throughput with varying low priority utilization (ρl). ρh and

ρm are set to one. Figure 7(b) shows the latency of the high

priority class with varying low priority utilization. We observe

near perfect correlation between the observed and predicted

values with a maximum deviation of less than 5%. Thus, we

believe that our model works well in practical situations and is

a useful tool for performance prediction. Given the estimated

values of γ, a, and p, we can accurately predict the latency

and throughput of any priority class.

C. Model usage scenarios

Calculating the average throughput and maximum latency

for each priority class can prove to be useful in multiple

scenarios while provisioning I/O bandwidth and latency SLAs

in cloud environments. Consider a scenario where some job

is already using an NVMe device and the cloud resource

scheduler would like to schedule another job to use the same

device. By using Equation 2, the scheduler can calculate the

I/O bandwidth for both jobs and determine whether their

respective SLAs will be violated. A decision can then be

made about scheduling the new job to use the NVMe device.

Now consider another scenario where the scheduler would

like to assign weights to each priority class. Equations 2

and 3 can be used to calculate the weights, assuming that

the bandwidth and latency SLAs and utilization of each job

are known beforehand.
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We have shown in this section that the performance model-

ing of arbitration schemes in NVMe can serve to be extremely

useful in cloud environments.

V. QOS-AWARE SPDK RUNTIME

In this section, we describe our proposed approach for

designing a QoS-aware SPDK runtime. We start by presenting

our solution for enabling service guarantees in NVMe-based

cloud environments, before moving on to our application

oblivious design for QoS provisioning using SPDK. Finally,

we present evaluation results with synthetic application sce-

narios to demonstrate the benefits of our design.

A. Enabling service guarantees
In modern cloud environments, users expect a guarantee of

service for their applications. Cloud providers typically nego-

tiate SLAs with users as a way to provide these guarantees.

In such a scenario, cloud middleware and runtime should be

able to provide mechanisms to satisfy these guarantees as

QoS. From an end user’s perspective, the SLA provisioning

should be completely transparent. So, the service guarantee

mechanisms should be completely application oblivious. In

the context of NVMe storage, our goal is to use the hard-

ware provided arbitration mechanisms as a way of providing

applications with a guarantee of I/O bandwidth. Since these

schemes should be application oblivious, we propose to mod-

ify the (SPDK) runtime to allow for QoS support.

A cloud environment typically charges users based on the

level of priority they desire. Since, the NVMe WRR arbitration

scheme allows for three priority classes as discussed before,

we propose the same priority classes for application users as

well. The corresponding priority classes will be mapped to

each other such that an application with high priority will

submit I/O requests to the high priority submission queue

and so on. The DRR scheme is also based on the same

three-priority system. The weight of each priority class, which

determines the maximum number of I/O commands that can

be processed from one class in an arbitration round, can be

determined by the cloud provider based on the SLA negotiated

with the user. Similarly, for scheduling multiple users to share

an NVMe SSD, the I/O priority requested by each user and

the priority class weights need to be considered.

B. Application oblivious QoS provisioning
The SPDK runtime has support for the NVMe WRR

scheme. This is however left to the discretion of the user

himself. To use the WRR scheme, the user has to explicitly

enable it using an SPDK function and set the priority for

each submission queue created. This existing mechanism does

not satisfy our application oblivious requirements. We thus

propose a new priority mapping design in SPDK which does

not require application changes to modify priority. To this end,

we propose to use the Linux I/O priority framework as a means

to transfer the priority class information from the application

to the SPDK runtime, similar to the approach proposed in [11].

The I/O priority class for an application can be set using

the ionice command which expects a value from 0 to 3. We

use the 1-3 classes and map them to high, medium, and low
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Figure 8. Evaluation with Synthetic Application Scenarios: (a) Bandwidth
over time with Scenario1, (b) Job bandwidth ratio for Scenarios 2-5

priority classes. 0 is mapped to the urgent priority class and is

left for cloud administrative purposes. The priority class for the

application can then be obtained by SPDK using the Linux I/O

priority interface (ioprio_get syscall). This design works

because the SPDK runtime will be run in the context of the

thread submitting I/O. We modify the SPDK runtime to always

use the WRR or DRR scheme and set the priority for a QP

based on the I/O priority of the application it is associated to.

The I/O priority of each application can be set by the cloud

middleware based on the SLA with each user. In this manner,

any application built using SPDK can be provided any level

of service without the need to modify the application.

C. Handling rogue tenants
Our QoS-aware runtime provides tenants with an interface

to provide a certain guarantee of service. In this regard, it

is important to ensure that a rogue tenant cannot influence

the performance of others. In our design, each tenant is

allocated a separate QP for I/O request processing, resulting in

performance isolation. The actual request processing is done in

the QEMU emulator which ensures that the service guarantees

of each priority class are maintained. A rogue tenant might

submit requests at a rate higher that its service guarantee. This

will only result in its submission queue getting filled up, and

eventually it will be unable to submit requests. This will result

in its throughput getting limited to its service guarantee. Thus,

QoS will be ensured regardless of how the tenants submit

requests.

D. Synthetic application scenarios
We use the same testbed as described in Section II for

our evaluations. However, since our SSD does not support

hardware-based arbitration, we instead use our QEMU-based

emulator. We use a modified version of QEMU [17] built for

Open-Channel SSDs and SPDK v17.10 for our evaluations and

as a base for our designs.

To show the benefits of a QoS-aware SPDK runtime, we

simulate five application scenarios and measure the bandwidth

achieved by each job over time. For all scenarios, we set the

priority class weights to (32, 16, 8) for WRR and (128k, 64k,

32k) for DRR, ensuring that the weight ratios are the same. For

the first scenario, we use an experiment similar to the one in

Section II-B. In this scenario, we run one high priority job with

4k requests and one medium priority job with 8k requests. Fig-

ure 8(a) shows the results of this experiment. With the WRR,

both jobs receive the same bandwidth despite having different
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priorities. Each request is given equal priority regardless of

its size, leading to a skewed bandwidth distribution. However,

DRR is able to achieve near perfect bandwidth distribution as

per priority weights. We also note that the bandwidth over time

is relatively stable pointing to a robust hardware emulation.
The remaining scenarios all have 2 simultaneous jobs

submitting back-to-back requests. Scenario 2 has two high

priority jobs, both with 4k requests. Scenario 3 has a high

priority job with 4k requests and a low priority job with

8k requests. Scenario 4 is the same as Scenario 3 with

the priorities exchanged. Scenario 5 has two high priority

jobs, one submitting 4k and 8k requests and the other 8k

and 16k requests. We measure the total average bandwidth

for both jobs in each scenario and calculate the bandwidth

ratio. This analysis is presented in Figure 8(b). We also

provide the expected ratio as per the priority weights. We

are more interested in the bandwidth ratios rather than their

actual values since we are focused on QoS and the hardware

performance is only emulated. In all scenarios, the difference

in request sizes leads WRR to incorrectly favor the job with

larger request size, while DRR is able to achieve close to the

expected ratio. The only case where WRR provides the desired

ratio is Scenario 2, where the request sizes for both jobs

are the same. Default QEMU just provides equal throughput

distribution, not providing any service guarantees whatsoever.

This analysis clearly demonstrated the superiority of DRR over

WRR in achieving bandwidth guarantees.
Although our results are based on NVMe emulation, we

expect similar behavior with actual hardware. There are two

reasons for this expectation. One, both WRR and DRR have

been shown to be easy to implement in hardware [26],

[28] and provide accurate bandwidth ratios. Two, usage of

separate hardware queues for each application along with

lockless request submission and completion paths ensure that

the hardware performance characteristics are reflected in the

application performance. We thus believe that DRR should
either become part of the NVMe standard or be accepted
by vendors as a good implementation choice for vendor
specific arbitration schemes.

VI. DISCUSSION

In this section, we discuss aspects of NVMe and Flash

devices that are particularly relevant to our work.
Performance: The performance of NVMe devices in virtu-

alized environments is a source of concern. The NVMe stan-

dard provides Single Root I/O Virtualization (SR-IOV) [29] for

NVMe device virtualization. With SR-IOV, the NVMe device

can be presented to each VM as a separate physical device.

The VM can directly access the device without hypervisor

intervention. Studies [12], [30], [31] have shown than SR-

IOV performance is close to native. Cloud providers should

provide support for SR-IOV-based NVMe virtualization to

allow for maximum performance. For the software stack,

SPDK offers significantly lower latency and higher throughput

for I/O requests as compared to POSIX. Of course, not all

applications are written using SPDK or can be easily modified

to use it.

Isolation: The NVMe standard offers the ability to create

namespaces as a way to achieve logical isolation. Namespaces

are a set of logical blocks in the hardware. Each namespace

contains a distinct continuous set of logical blocks and can

be addressed using a namespace id. This design does not

provide any guarantee of performance isolation since the

namespaces are logical and the physical blocks used to store

the data are common for all namespaces. Separate namespaces

offer complete isolation only in terms of security. In a cloud

environment, each VM can be assigned a separate namespace

for security isolation, however performance isolation is still a

matter of concern. Recent work [12] has shown that modifying

the Flash Translation Layer (FTL) to map namespaces to

separate physical blocks can show significant improvement in

I/O performance in virtualized environments.

QoS: We find that DRR is better suited for achieving band-

width QoS. According to the NVMe specification, NVMe ven-

dors can implement their own arbitration schemes. We believe

that NVMe vendors should implement DRR for enterprise

Flash devices to provide an efficient mechanism for hardware-

based QoS. Flash devices suffer from the write amplification

effect [32], [33] which leads to read/write interference. This

can disrupt the performance of DRR when workloads with

mixed read and write requests are executed simultaneously. We

have ignored the effects of write amplification in this paper.

This remains an interesting avenue for future research.

VII. RELATED WORK

There has been a lot of research in emulating PCIe devices.

In particular, the rising interest in NVMe has led to the

development of several emulators which provide some basic

NVMe functionality. QEMU [25] provides support for NVMe

emulation which has been discussed at length in this paper.

In addition, VirtualBox also provides basic NVMe emulation.

Several other solutions [34]–[40] are also available. However,

none of these emulators provide mechanisms to exploit the

arbitration mechanisms provided by the NVMe standard. Our

solution is thus unique in providing this support.

Several prior works have studied QoS support over shared

cloud and data-center storage systems [3]–[7]. Particularly for

Flash-based storage, specific cost model based I/O schedulers

such as FIOS [8] and FlashFQ [9] designed for fairness and

throughput guarantees were proposed. On the other hand,

providing QoS-aware runtimes for NVMe devices has been a

topic of recent research. Joshi et al. [11] propose to implement

WRR support for NVMe in the Linux driver. They employ a

similar I/O priority-based approach for application oblivious

QoS provisioning. However, their design suffers from two

fundamental flaws. First, they implement their design in the

Linux driver which we have shown to perform poorly as

compared to SPDK. Second, they provide no mechanism

for cloud providers to provision SLAs using their solution.

We argue that our solution is more applicable in terms of

performance and usability in cloud environments.

With the availability of fast network interconnects, stor-

age disaggregation-based technologies and systems are being
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extensively explored [41], [42]. Along these lines, software-

based systems for accessing remote NVMe Flash at latencies

as low as local NVMe access, such as ReFlex [10], have been

proposed. Open-source disaggregated I/O architectures, such

as Crail [42], are built exclusively with user-level I/O support

(e.g., NVMeoF, SPDK, RDMA), allowing heterogeneous stor-

age and networking hardware to interact with each other in an

optimal manner within the data processing engine.

VIII. CONCLUSION

In this paper, we first provided results demonstrating the

clear superiority of SPDK. Next, we evaluated the existing

QEMU-based NVMe emulator using performance and QoS as

our metrics. We concluded that the emulator is insufficient for

providing any service guarantees. We then proposed designs

for accurate modeling of hardware-based WRR and DRR in

the QEMU NVMe emulator. We theoretically modeled the

arbitration schemes and showed how the analysis can be

used for SLA provisioning in cloud environments. Finally, we

discussed a new approach for providing service guarantees

using a QoS-aware SPDK runtime. We demonstrated through

experimental evaluation that our QoS-aware NVMe emulator

with DRR scheme and SPDK runtime can deliver bandwidth

service guarantees in cloud environments in an application

oblivious manner. This paper should prove useful to vendors

while designing arbitration schemes in SSDs and to cloud

providers in provisioning SLAs for tenants. In the future, we

plan to explore more along the communication perspective

through integration with RDMA and NVMe over Fabrics.
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