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Abstract—In this paper, we combine high-performance com-
puting science with computational neuroscience methods to
show how to speed-up cutting-edge methods for mapping and
evaluation of the large-scale network of brain connections. More
specifically, we use a recent factorization method of the Linear
Fascicle Evaluation model (i.e., LiFE [1], [2]) that allows for
statistical evaluation of brain connectomes. The method called
ENCODE [3], [4] uses a Sparse Tucker Decomposition approach
to represent the LiFE model. We show that we can implement
the optimization step of the ENCODE method using MPI and
OpenMP programming paradigms. Our approach involves the
parallelization of the multiplication step of the ENCODE method.
We model our design theoretically and demonstrate empirically
that the design can be used to identify optimal configurations for
the LiFE model optimization via ENCODE method on different
hardware platforms. In addition, we co-design the MPI runtime
with the LiFE model to achieve profound speed-ups. Extensive
evaluation of our designs on multiple clusters corroborates our
theoretical model. We show that on a single node on TACC
Stampede2, we can achieve speed-ups of up to 8.7x as compared
to the original approach.

Keywords-Brain Connectome, LiFE, MPI, Multiway Array,
OpenMP, Tensor Decomposition

I. INTRODUCTION

In this paper, we present work that bridges two com-

munities of researchers, namely computer scientists working

on high-performance computing and computational neuro-

scientists working on methods for mapping the network of

human brain connections. The work exemplifies the modern

needs of scientific progress, where trans-disciplinary efforts

help advance understanding faster by allowing the fastest

computing methods to support basic research. In our example,

we combine cutting-edge computational neuroscience methods

with high-performance computing approaches. We demon-

strate major speedups that allow solving the structure of the

human brain in less than one-eighth of the original time.

The Linear Fascicle Evaluation (LiFE) method [1], [2] is a

method based on convex optimization that uses a large set
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Grant #ULT-TR001108 and the Indiana University Areas of Emergent Re-
search initiative Learning: Brains, Machines, Children to Franco Pestilli. Data
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of fascicles generated using multiple tractography methods

and identifies the subset of fascicles that best predict the

measured dMRI signal. The LiFE method has been extended

into a flexible framework for encoding dMRI, brain anatomy,

and evaluation methods using multidimensional arrays [3].

This framework called ENCODE allows implementing the

convex optimization algorithm [4] used to identify fascicles

that effectively predict the measured dMRI signal by means of

multidimensional arrays manipulations. The multidimensional

organization of ENCODE allows us to exploit parallelization

methods such as OpenMP and MPI to speedup the process of

fascicle evaluation.

The original LiFE model [1] operated on arrays which

were too large to fit in main memory (50 - 100 GB). The

extended LiFE model [3], [5] uses a decomposition method

to compress the data so that it can easily fit in memory (1

GB). This extension poses challenges for designing parallel

algorithms for LiFE, particularly owing to the sparse nature of

the resulting compressed data matrices. In addition, even with

the compression technique, the data sizes involved are much

larger than typical message sizes used in MPI. In this paper,

we propose parallel algorithms using the MPI and OpenMP

programming models which can solve these challenges. We

theoretically model our proposed algorithms by calculating the

runtime complexity and maximum speedup. Extensive evalua-

tion on three modern clusters demonstrates that our proposed

parallel LiFE model (called MPI-LiFE) can achieve a speed-

up of up to 8.7x. We also show that our model works well

on different platforms and by using our theoretical analysis,

the speed-up can be approximately estimated. Hereafter, we

first describe a recent model for statistical evaluation of brain

connectome (the large-scale network of brain connections), we

then demonstrate how to use MPI-based methods to reduce the

computing time necessary to optimize the model and map the

human brain.

The rest of this paper is organized as follows. Section II

discusses the background of our work, Section III presents

a description of the parallelization problem, and Section IV

presents our proposed algorithms to parallelize the LiFE

model. Section V discusses the theoretical analysis of our

proposed model, Section VI demonstrates a performance eval-
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uation of our proposed design, and Section VII discusses

related work. Finally, Section VIII concludes the work.

II. BACKGROUND

A. Statistical Evaluation of Brain Connectomes

Diffusion-weighted MRI (dMRI) data and computational

tractography methods allow the estimation of the macroscopic

structure of the brain connections in living human brains.

dMRI measures the diffusion of water molecules along dif-

ferent spatial directions within the brain tissue. Diffusion is

strongest in the direction of the neuronal fiber bundles, this sig-

nal can be used to reconstruct the three-dimensional structure

of the neuronal axons within the brain tissue by using compu-

tational tractography. Brain connections are reconstructed as

sets of fascicles, namely the Brain Connectome (see Figure 1),

describing the putative position and orientation of the neuronal

axons bundles wrapped by myelin sheaths traveling within the

brain [6], [7], [8], [9]. Since dMRI provides only indirect mea-

surements of the brain tissue organization and tractography is

a stochastic computational method, the anatomical properties

of the putative fascicles estimated with these methods can

depend on data type, tractography algorithm, and parameters

settings [1], [2], [10]. For this reason, investigators have been

developing methods for results validation based on statistical

and computational approaches [11], [8], [12], [13].

Figure 1. The Brain Connectome. Illustration of a set of fascicles (white
matter bundles) obtained by using a tractography algorithm. Fascicles are
grouped together conforming white matter tracts (shown with different colors
here) connecting different cortical areas of the human brain.

Recently, linear methods based on convex optimization have

been proposed for connectome evaluation [1], [2] and simulta-

neous connectome and white matter microstructure estimation

[14]. The Linear Fascicle Evaluation method (LiFE; [1], [2]),

uses a large set of putative fascicles generated by using mul-

tiple tractography methods (called candidate connectome) and

identifies the subset of fascicles that best predict the measured

dMRI signal using convex optimization. The LiFE method

was recently extended into a flexible framework for encoding

dMRI, brain anatomy and evaluation methods using multidi-

mensional arrays [3]. The framework called ENCODE allows

to implement the convex optimization algorithm [4] used to

identify fascicles that effectively predict the measured dMRI

signal by means of multidimensional arrays manipulations. As

a result of the multidimensional organization of ENCODE,

we can exploit parallelization methods such as OpenMP and

MPI to speedup the process of Fascicle Evaluation. Hereafter

we demonstrate striking results with speedups up to 8.7x that

combine ENCODE and MVAPICH2. Before that, we briefly

introduce the MVAPICH2 MPI library.

B. MVAPICH2

MVAPICH2 [15] is an open-source implementation of

the MPI-3.1 specification over modern high-end computing

systems and servers using InfiniBand, Omni-Path, Ether-

net/iWARP, and RDMA over Converged Ethernet (RoCE)

networking technologies. The MVAPICH2 software packages

are being used by more than 2,825 organizations worldwide in

85 countries and are powering some of the top supercomput-

ing centers in the world, including the 1st, 10,649,600-core

(Sunway TaihuLight) at National Supercomputing Center in

Wuxi, China, the 15th Pleiades at NASA, the 20th Stampede

at TACC, and the 44th Tsubame 2.5 at Tokyo Institute of

Technology. MVAPICH2 is also being distributed by many

InfiniBand, Omni-Path, iWARP, and RoCE vendors in their

software distributions. MVAPICH2 has multiple derivative

packages, which provide support for hybrid MPI + PGAS

(CAF, UPC, and OpenSHMEM) programming models with

unified communication runtime (i.e., MVAPICH2-X), opti-

mized MPI communication for clusters with NVIDIA GPUs

(i.e., MVAPICH2-GDR) and Intel MIC (i.e., MVAPICH2-

MIC), high-performance and scalable MPI communication for

hypervisor- and container-based HPC cloud (i.e., MVAPICH2-

Virt), and energy aware and high-performance MPI commu-

nication (i.e., MVAPICH2-EA). In this paper, we primarily

use the standard MVAPICH2 library to parallelize the LiFE

code with the MPI programming model to obtain optimized

performance on supercomputers with InfiniBand and Omni-

Path networks.

Symbol Description
Nθ Number of diffusion directions

Nv Number of voxels

Nf Number of fascicles

Nn Number of nodes in connectome

p Number of MPI processes

Table I
NOTATION

III. DESCRIPTION OF PARALLELIZATION PROBLEM

Table I describes the commonly used symbols in this paper

and this section in particular. The LiFE model [1] can be

expressed using the following equation:

y ≈Mw, (1)

where y ∈ R
NθNv is a vector which contains the demeaned

signals for all white-matter voxels (v) across all diffusion

directions (θ). M ∈ R
NθNv×Nf is a matrix, which at column

f contains the signal contribution given by fascicle f at voxel
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v across all directions θ, and w ∈ R
Nf contains the weights

for each fascicle in the connectome. The estimation of these

weights requires solving the the following non-negative least-

square constrained optimization problem:

min
w

(
1

2
‖y −Mw‖2

)
subject to wf ≥ 0, ∀f. (2)

Recently, a multidimensional encoding of brain connec-

tomes, namely, the ENCODE model [3] was proposed, which

employs sparse multiway decomposition to reduce the size

of the data that needs to be stored. Data compression is

achieved using the Sparse Tucker Decomposition (STD) model

for multiway arrays [16], [17]. Using this model, a 3rd

array X ∈ R
I1×I2×I3 , is approximated by the following

decomposition:

X ≈ G×A1 ×A2 ×A3, (3)

where G ∈ R
R1×R2×R3 is the sparse core array and An ∈

R
In×Rn are the factor matrices. The decomposition does not

guarantee a good approximation. However, it compresses the

data because the core array is very sparse.

M is a very large block-sparse matrix (M ∈ R
NθNv×Nf )

which can be converted to a multiway array by using diffusion

directions (θ), voxels (v), and fascicles (f ) as the dimensions

of a 3D multiway array M ∈ R
Nθ×Nv×Nf . By representing M

as a multiway array, we can use the STD to compress its size.

The original LiFE equation can then be rewritten as follows:

Y ≈M ×3 w
T , (4)

where Y ∈ R
Nθ×Nv is the matrix version of vector y. By

employing the Sparse Tucker Decomposition, we get

M = Φ×1 D ×2 S0, (5)

where the 3-way array Φ ∈ R
Na×Nv×Nf has ma-

trices Φv ∈ R
Na×Nf as lateral slices and S0 =

diag(S0(1), S0(2), ..., S0(Nv)) ∈ R
Nv×Nv is a diagonal ma-

trix with values S0(v) along the main diagonal. By combining

Equations 4 and 5, the following decomposition is obtained:

Y ≈ Φ×1 D ×2 S0 ×3 w
T . (6)

Φ is sparse, which results in strong data compression.

Solving the optimization problem (Equation 2) requires

the use of Non-Negative Least Squares (NNLS) optimization

algorithms. These algorithms require the iterative computation

of two basic operations (y = Mw and w = MT y). Since we

never explicitly store the matrix M , but rather its STD, the

computation of the two basic operations requires the use of

multiway arrays. y = Mw can be computed using Equation 6,

while w = MT y can be computed as follows:

w = Φ(3)vec(D
TY S0) (7)

An analysis of the STD-based LiFE implementation on a

single Xeon node of cluster A (see Table II), reveals that

about 92% of the total time is spent in the two multiway array

multiplication operations. 3% of the time is spent in loading

Platform Data Loading NNLS y = Mw w = MT y
Cluster A 2.57% 4.91% 63.31% 29.21%

Cluster C 5.02% 2.47% 72.95% 19.56%

Table II
TIME BREAKUP OF LIFE. RESULTS ARE TAKEN ON A SINGLE NODE OF

CLUSTER A (XEON NODES) AND CLUSTER C (KNL NODES). PLEASE

REFER TO TABLE III FOR A DESCRIPTION OF THE CLUSTERS.

the data, and 5% of the time is spent solving the optimization

algorithm. A similar trend is observed on cluster C. Thus,

it is clear that multiway array multiplication is the main

bottleneck in the LiFE model and offers the most opportunity

for parallelization. This parallelization poses a challenge due

to the large sizes and sparse nature of the arrays as well as data

dependencies in the computation of the array multiplication.

For example, with the dataset we used for evaluation, the size

of matrix D is 94.65 MB and matrix Y is 149.46 MB. Given

these sizes, the MapReduce [18] paradigm seems to be a good

parallelization choice, however, given the iterative nature of

the optimization algorithm, this choice is clearly the wrong

way to proceed. While MPI is usually not used for message

sizes of this nature, we argue that it fits our requirements.

MPI is designed for performance and flexibility. The unique

computational nature of the LiFE model can be accurately

captured and parallelized using MPI. We thus select the MPI

programming paradigm to design a parallel algorithm for the

LiFE model. We describe our proposed design to parallelize

the LiFE model in the next section.

IV. PROPOSED DESIGN

In this section, we propose high-performance parallel de-

signs to accelerate the computation of the optimization algo-

rithm used in the LiFE model. We specifically use the MPI and

OpenMP programming models to compute the multiplication

of large sparse multiway arrays. The two main operations to be

parallelized are y = Mw and w = MT y. We present designs

to accelerate both of these operations. We theoretically analyze

our proposed designs and show how this analysis can be used

to predict the optimal configuration to run LiFE on different

platforms.

A. MPI-based LiFE Model

The proposed MPI-based design follows a master-slave

architecture. The master rank runs the main optimization

algorithm and is responsible for distribution of computation

among slave ranks. Distribution of data and gathering of

results is also handled by the master rank and is done with the

help of MPI collectives. The iterative computation required by

the optimization algorithm results in the repeated calculation

of y and w. However, M remains constant throughout the

process. Thus, M only needs to be sent to the slave ranks in

the beginning of the application execution. Since M is itself

never stored, but rather its STD, the sub-components of M ,

i.e. Φ, D, and S0 are sent to the slave ranks in the beginning

itself.
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The computation of y and w requires iterating over all the

possible nodes within the brain connectome (Nn) and all pos-

sible diffusion directions (Nθ). Nodes are like (x, y, z) spatial

coordinates within the brain. Nn ≈ 106 − 107, depending

on the dMRI resolution and is typically � Nθ. Thus, we

divide the computation based on the nodes. Each MPI process

gets an appropriate chunk of the sub-components of M so

that it can compute the values of y and w corresponding to

the nodes which it has been assigned. This is done using

MPI Scatter. In addition to M , the master rank also needs to

send the matrices Y and w to the slave ranks so that the two

operations can be computed. Y needs to be sent to compute

w, and vice-versa. This needs to be done each time when one

of the two operations requires computation. In addition, the

computation of each index of Y can depend on any index

of w and vice-versa. This is because any fascicle can pass

through any voxel, thus the diffusion signal at a voxel can

depend upon any number of fascicles. Similarly, the weight of

a fascicle can depend upon the diffusion signal at any voxel.

This means that to compute w, the entire Y matrix needs to

be sent to all processes and vice-versa. While this might seem

to be computationally inefficient and expensive, as we will

see later, the time required for the broadcast of these matrices

constitutes only a small portion of the overall application time.
We now describe the algorithm for computing the two

operations.

=

Nθ NaNθ

Nv

Y1

Diffusion signals computed by rank 0

Diffusion signals computed by rank 1

Dictionary and fascicle weights used by rank 0

Dictionary and fascicle weights used by rank 1

x  S0  x
Y2

Y = Y1 + Y2

D

Dictionary and fascicle weights used by both 
ranks

wT

Figure 2. Computation of y = Mw using 2 MPI processes. Each MPI
process uses some of the columns of D, and some of the fascicle weights.
The partial diffusion signals are added to obtain the final weights at rank 0
using MPI Reduce. It should be noted that only non zero entries in Φ for D
and w are multiplied to save CPU cycles.

1) y = Mw: For this operation, w is broadcasted to all

processes using MPI Bcast. As mentioned before, each MPI

process computes the demeaned signal for a fraction of the

nodes in the brain, for all diffusion directions. Thus each

MPI process will have the partial demeaned signals for a

subset of the voxels. These subsets are not guaranteed to be

mutually exclusive. Thus, to compute the overall diffusion

signal for all voxels in all diffusion directions, we need to

add the computed signals for the corresponding indices across

all MPI processes. To this end, we use MPI Reduce to get

the final result, which conveniently provides the final result at

the master rank as desired. Figure 2 shows the working of this

algorithm across two MPI processes and Algorithm 1 provides

a formal representation of this operation.

= x S0

NθNa

Nθ Nv

YDT

w = w1 + w2

w2

w1

Diffusion signals used by rank 0

Diffusion signals used by rank 1

Fascicle weights computed by rank 0

Fascicle weights computed by rank 1

Figure 3. Computation of w = MT y using 2 MPI processes. Each MPI
process uses the entire D matrix and a fraction of the columns of Y to compute
some of the fascicle weights. The fascicle weight values are added to obtain
the final weights at rank 0. It should be noted that only non zero entries in
Φ for DT and Y are multiplied to save CPU cycles and w is the vectorized
output of the multiplication.

2) w = MT y: The matrix Y is broadcasted to all processes

using MPI Bcast. Each MPI process computes the weight of

a subset of fascicles for a subset of nodes in the brain and for

all diffusion directions. For each node, we compute the weight

contribution for a particular fascicle. To calculate the overall

weight for each fascicle, we must add the weight contributions

for individual fascicles. To compute this result, we gather the

computed values from all MPI processes using MPI Gather at

the master rank and iterate over the values for all nodes and

compute the combined weight for each fascicle. MPI Reduce

could also have been used to compute the final result, however,

given the sparse nature of the weight array at each process,

it would have resulted in a lot of unnecessary computation.

Figure 3 shows the working of this algorithm across two MPI

processes and Algorithm 2 provides a formal representation

of this operation.

Algorithm 1 y = M times w(Φ, D, S0, w)

1: procedure M TIMES W(Φ, D, S0, w) � Predict demeaned
diffusion signals

2: c size ← Nn
p

3: [a, v, f, c] = get nonzero entries(Φ) �
a(n), v(n), f(n), c(n) indicate the atom, the voxel, the fascicle,
and coefficient associated with node n, respectively, with n =
1, 2, ..., Nn

4: MPI Bcast(w)
5: for n = 1 to c size do
6: Y (:, v(n)) = Y (:, v(n)) +D(, : a(n))w(f(n))c(n) �

Compute partial Y signals

7: MPI Reduce(Y ) � Aggregate partial demeaned signals
8: y ← vec(Y ) � Only rank 0
9: return y

B. Hybrid MPI + OpenMP-based LiFE Model

While the MPI-based design is useful in parallelizing the

LiFE model across multiple processors (on the same or

different nodes), it adds communication cost which limits

the speedup that can be attained. Thread-based parallelism

(like OpenMP and pthreads) offers the opportunity to scale

applications on multiple cores within a single node without

adding additional communication cost. However, limitation to

a single node restricts its applicability. A hybrid design with

216



Algorithm 2 w = Mtransp times y(Φ, D, S0, y)

1: procedure MTRANSP TIMES Y(Φ, D, S0, y) � Predict fascicle
weights

2: c size ← Nn
p

3: [a, v, f, c] = get nonzero entries(Φ) �
a(n), v(n), f(n), c(n) indicate the atom, the voxel, the fascicle,
and coefficient associated with node n, respectively, with n =
1, 2, ..., Nn

4: MPI Bcast(y)
5: for n = 1 to c size do
6: k(n) = DT (:, a(n))Y (:, v(n))c(n) � Compute partial

weights

7: MPI Gather(k) � Gather partial weigths
8: for n = 1 to Nn do � Only rank 0
9: w(f(n))← w(f(n)) + k(n)

10: return w

MPI and OpenMP has the potential to be much more scalable

than its constituents.

We thus extend the MPI-based design with OpenMP, such

that each MPI process uses OpenMP threads to parallelize the

multiway array multiplication. For both multiplication opera-

tions, each MPI process iterates over a fraction of nodes and all

diffusion directions as part of the multiplication computation.

Adding threads to the equation works in a similar fashion.

Each thread iterates over a fraction of the nodes assigned to

each MPI process and all diffusion directions.

By leveraging OpenMP, we can achieve speedup without

adding any communication cost. With MPI + OpenMP, we can

run the LiFE model across multiple nodes allowing access to

a larger set of cores, and thus higher speedup.

C. MPI Collective Performance
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Figure 4. MPI Collective Performance. Result are taken on Cluster A with
1 PPN. The message sizes for the collectives are the exact message sizes that
are used in our experimental evaluation dataset.

With the knowledge that the collective communication

message sizes involved in our implementation are very large

(4 − 200 MB), the performance of MPI collectives comes

into question. We look at the performance of bcast, gather,

and reduce in particular because these collectives are used

in each iteration of the optimization algorithm. We evaluate

the latency of these collectives for the exact message size

as used in our implementation for different number of MPI

processes. This analysis is presented in Figure 4. It is clear

that the performance of reduce is poor as compared to other

collectives. This is a result of the large message size (150 MB)

for reduce as well as the compute portion of reduce. Reduce

performance is a bottleneck when running a large number

of MPI processes. After analyzing the reduce performance

runs, we found that the computation part of reduce is the

main bottleneck. For the MPI + OpenMP-based design, each

MPI process utilizes some OpenMP threads to parallelize the

portion of multiway array multiplication it is allocated. These

threads can also be used to parallelize the reduce operation

at each MPI process. Since the reduce operation is embar-

rassingly parallel, its parallelization is straightforward using

OpenMP. This optimization is implemented in the MVAPICH2

library and is used for all performance evaluations.

D. Implementation

The main optimization algorithm is implemented in MAT-

LAB while the multiway matrix multiplication is implemented

in C for performance and to allow integration with MPI. The

entire MATLAB implementation is compiled as a C shared

library with the help of the MATLAB compiler SDK. This

shared library uses the MATLAB runtime internally to call

and execute the MATLAB functions. This allows us to create

a C wrapper for the entire application, thus converting it into

a binary executable. In addition, this binary can be packaged

along with the MATLAB runtime so that the entire application

can be run without any dependencies or MATLAB license.

Containerization of the entire application is possible, although

is beyond the scope of this paper, and is thus left as future

work.

V. ANALYSIS

In this section, we analyze the runtime complexity of the

default, MPI-based, and MPI + OpenMP-based LiFE mod-

els. We first consider an ideal scenario in which the MPI

communication cost is zero and computational speedup scales

linearly with the number of cores used. Then we consider the

scenario when collective communication cost is non-zero, but

its complexity is that of its best possible implementation.

A. MPI Collectives

We use bcast, scatter, gather, and reduce in our LiFE

models. Scatter is only used in the beginning to distribute the

components of the multiway array M . Since a large number

of iterations of the optimization algorithm are run (50 for

evaluation; at least 500 for real use cases), the scatter cost

can be said to be amortized, and is thus not considered as part

of the model complexity. For modeling the cost of the other

collectives, we employ the Hockney model [19] to estimate

point-to-point communication cost. According to the Hockney

model, the time to send a message of m bytes between two

nodes is α + βm, where α is the latency for each message,
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and β is the time required to transfer a byte of data. Using

this model, as demonstrated in [20], the cost of each collective

can be estimated as follows:

• Bcast: O (�log2 p	 × (α+ βm))
• Gather: O (�log2 p	 × (α+ βm))
• Reduce: O (�log2 p	 × (α+ βm+ γm)),

where m is the size of each segment, γ is the computation

time per byte of data, and p is the number of MPI processes.

B. LiFE Model

The original LiFE model runs the SBB NNLS optimization

algorithm [21], which runs multiple iterations, each time

converging further towards an optimal solution. Each iteration

requires the computation of the two multiplication operations

at least once. Assuming that data loading and running the

optimization algorithm take a constant amount of time and

the model is run for n iterations, the total complexity of the

LiFE model is O (NnNθn).

C. MPI-based LiFE Model

For both the multiplication operations, each MPI process

operates on a fraction of nodes. Thus, assuming the ideal

scenario, the complexity of y = Mw will be O
(

NnNθ

p

)
.

For w = MT y, the complexity will be the same except that

the final updating of the weights is done by only the master

rank. Its complexity is thus O
(

NnNθ

p +Nn

)
. The overall

complexity can be calculated out to be O
(

NnNθ

p n+Nnn
)

.

For the scenario with non-zero communication cost, the overall

complexity can be calculated by using the equations for MPI

collectives listed before as

O

(
NnNθ

p
n+Nnn+ �log2 p	n×(

α+ β

(
NvNθ +Nf +

Nn

p

)
+ γ (NvNθ)

))
, (8)

D. Hybrid MPI + OpenMP-based LiFE Model

In this model, the computation at each MPI process is

further divided among the OpenMP threads. The overall com-

plexity can be calculated out to be O
(

NnNθ

p×t n+Nnn
)

. While

for the non-zero communication time scenario, this cost is

O

(
NnNθ

p× t
n+Nnn+ �log2 p	n×(
α+ β

(
NvNθ +Nf +

Nn

p

)
+ γ (NvNθ)

))
,

where t is the number of OpenMP threads per MPI process.

E. Speed Up

In this sub-section, we analyze the maximum theoretical

speedup using Amdahl’s law. According to Amdahl’s law, each

program consists of a parallel and a sequential portion. The

speedup of the program is limited by the sequential portion.

If we analyze the LiFE model with this ideology, we can

conclude that the two multiway array multiplication func-

tions constitute the parallel portion of the model, while data

loading and execution of optimization algorithm constitute

the sequential portion. Assuming that td is the time taken

for data loading, to is the time taken by the optimization

algorithm, tmm1 and tmm2 are the overall times spent in the

two matrix multiplication functions, the theoretical maximum

speedup when using c cores, smax@c, can be calculated out

as

smax@c =
td + to + tmm1 + tmm2

td + to +
tmm1+tmm2

c

. (9)

The absolute theoretical maximum speedup, smax, is
td+to+tmm1+tmm2

td+to
. This speedup can practically never be

achieved because of the memory wall phenomena, as we shall

see in Section VI-C. The maximum speedup is in fact limited

by the maximum memory bandwidth achievable on a single

node. The actual maximum speedup is

smax =
td + to + tmm1 + tmm2

td + to +
tmm1+tmm2

mmax
ms

×N

, (10)

where mmax is the maximum memory bandwidth achievable,

ms is the memory bandwidth required by the application for

a single core, and N is the number of nodes.

VI. PERFORMANCE EVALUATION

A. Experimental Testbed

We evaluate our LiFE model on three separate platforms.

The configuration of these platforms is detailed in Table III.

Cluster A [22] is a local cluster at OSU with Broadwell

processors and EDR InfiniBand. Clusters B and C are the

Stampede [23] and Stampede2 [24] supercomputers at TACC.

In Cluster B, we use the large memory nodes which provide

Sandy Bridge processors with 32 cores per node. Cluster

C has the latest Xeon Phi nodes (KNL) from Intel which

have 68 cores per node. We choose such diverse platforms

to understand the performance characteristics of our designs

on different architectures and to show that they can work well

in any environment.

Parameter Cluster A Cluster B Cluster C
(OSU RI2) (TACC Stampede) (TACC Stampede2)

Processor Xeon E5-2680 v4 Xeon E5-4650 Xeon Phi 7250

Cores 28 32 68

Clock Speed 2.40 GHz 2.70 GHz 1.40 GHz

Memory 128 GB 1 TB 96 GB

Interconnect EDR InfiniBand FDR InfiniBand Omni-Path
(100 Gbps) (56 Gbps) (100 Gbps)

Table III
HARDWARE SPECIFICATION OF CLUSTERS USED FOR EVALUATION

We use MATLAB R2016a for writing and compiling the

optimization algorithm and MVAPICH2 v2.3a as the base for

our reduce designs. In addition, we perform manual tuning to

find the collective algorithms which perform the best for the

message sizes involved in our implementation.

To evaluate LiFE, we use one of the pre-processed dMRI

brain scans provided by the STN dataset [25]. We run 50
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Figure 5. Single Node Evaluation. CW represents the time taken for computing the fascicle weights (w = MT y) and CDS represents the time taken for
computing demeaned diffusion signals (y = Mw). The final graph shows the speedup for the entire LiFE model. Cluster A and B have Xeon nodes, while
Cluster C has KNL nodes.
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Figure 6. Time Breakup Evaluation. Load represents time spent on loading dataset into memory, NNLS represents time spent in executing the optimization
algorithm, and MM represents the overall execution time of the two multiway array multiplication operations. Reduce, Gather, and Bcast represent the time
spent executing the respective MPI collectives.
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Figure 7. Memory Bandwidth Evaluation. Actual bandwidth represents
the memory bandwidth achieved with the MPI-based LiFE model. Expected
bandwidth represents the single core memory bandwidth scaled linearly. These
results were obtained by removing the computation part of MPI-LiFE and
measuring the time taken for the memory accesses.

iterations of the optimization algorithm so as to ensure that

the application runs in a reasonable amount of time. We also

use a validation phase in our evaluation which verifies that

the output of the model is the same as that obtained from the

default sequential version.

B. Evaluation Methodology

Our main goal is to evaluate the performance of our design

on multiple architectures with different configurations. We

also want to show that the evaluation results corroborate with

our theoretical analysis. We first evaluate on a single node

with the MPI-based LiFE design. We then move on to multi-

node evaluation using the MPI + OpenMP-based LiFE design.

We show both the speedup as well as the overall execution

time. speedup on a platform is calculated with respect to the

execution of the LiFE model on a single node on the same

platform. We also present the speedup of the two operations

which we have parallelized. CW (computing weights) is used

to represent the w = MT y operation and CDS (computing

diffusion signals) is used to represent the y = Mw operation.

To differentiate the communication and computation costs, we

present the time breakup of various tasks in the proposed

designs. The total time is broken down into the following

tasks:

• MM: computing the multiway matrix multiplication on

local data

• NNLS: solving the SBB NNLS optimization problem

• Load: loading pre-processed data into memory via MAT-

LAB

• Bcast: executing MPI Bcast

• Gather: executing MPI Gather
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Figure 8. Multi Node Evaluation on Cluster A. Each MPI process uses 28, 14, and 7 OpenMP threads for 1, 2, and 4 PPN cases, respectively. CW
represents the time taken for computing the fascicle weights (w = MT y) and CDS represents the time taken for computing demeaned diffusion signals
(y = Mw). The final graph shows the speedup for the entire LiFE model.
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Figure 9. Multi Node Evaluation on Cluster C. Each MPI process uses 64, 32, and 16 OpenMP threads for 1, 2, and 4 PPN cases, respectively. CW
represents the time taken for computing the fascicle weights (w = MT y) and CDS represents the time taken for computing demeaned diffusion signals
(y = Mw). The final graph shows the speedup for the entire LiFE model.

• Reduce: executing MPI Reduce

Through our evaluation, we seek to answer the following

questions:

• What are the performance characteristics of our designs

on different architectures?

• What factors influence the speedup on different architec-

tures?

• Do the evaluation results match with our theoretical

model?

C. Single Node Evaluation
The comparison of speedup for different clusters and LiFE

models on a single node is presented in Figure 5. It can be

observed that we can achieve up to 4.2x speedup on cluster

A, 4.5x on cluster B, and 8.7x on cluster C for the MPI-based

design. If we take a look at the speedup we can achieve for

CW and CDS, it is clear that CDS is much more scalable.

The maximum speedup achievable for CDS is 28x, while for

CW is 8x. As seen in Algorithm 2, the final updating of

weights is done sequentially (due to data dependencies) by

rank 0, which limits the parallel performance of the operation.

Figure 6 shows the time breakup of the entire application run

for the three clusters. The cost for data loading (Load) and

running the SBB NNLS optimization algorithm (NNLS) stays

constant for all runs of the application. We do, however, see

some variations on cluster B and C. These are mostly due to

variation in the load on the NFS present on the clusters. The

time for multiway array multiplication (MM) is significantly

reduced with increasing number of MPI processes. The total

communication cost is only a small portion of the entire

application time. Although it increases with increasing number

of MPI processes, even at full subscription, it only represents

a small fraction of the execution time.

Memory Wall. With the large number of cores available in

modern processors, the available memory bandwidth per core

is extremely low. Parallelization of a memory-bound applica-

tion within a node will be limited by the available memory

bandwidth on the node. This phenomenon is commonly known

as Memory Wall [26]. This is the reason that the speedup

within a node does not scale linearly with increasing number

of cores. To demonstrate that this phenomenon is the reason for

the sub-linear speedup within a node, we modify Algorithms 1

and 2 to eliminate the compute portion while keeping the

memory accesses. We then measure the total time taken by

this portion of the algorithms and vary the number of cores

used, like in Figure 5. By analyzing the code and calculating

the total memory accesses, we calculate the aggregate memory

bandwidth achieved. The required bandwidth is calculated out

to be memory bandwidth obtained on a single core scaled lin-

early. The required bandwidth signifies the bandwidth required

to achieve linear scalability of the application. This analysis
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is presented in Figure 7. We can observe that cluster C offers

the best memory bandwidth scalability, while cluster A offers

the worst memory bandwidth scalability. While both clusters

A and C use DDR4 RAM, the low clock speed of cluster C

implies that the memory bandwidth will not be saturated easily.

Thus, cluster C offers a higher opportunity of parallelism,

which is exactly the trend we observe for speedup. In fact,

the speedup achievable on each cluster is directly correlated

with the memory bandwidth scalability of that cluster.

D. Multi Node Evaluation

The comparison of speedup for different clusters on multiple

nodes with the MPI + OpenMP-based model is presented in

Figures 8 and 9. It can be observed that we can achieve up to

8.1x speedup on cluster A and 8.1x on cluster C. The speedup

on cluster C is much lower than expected (considering the

results in Figure 5). The poor OpenMP performance on the

KNL nodes of cluster C is the reason for this observation.

In general, increasing the number of processes on each node

improves the speedup for a small number of nodes. However,

beyond a certain number of nodes, the performance with

multiple PPN deteriorates rapidly, owing to the increase in

communication cost. For CW and CDS, we can achieve a

speedup of up to 9.7x and 27.7x, respectively. The speedup

for CDS is particularly impressive, while that of CW is limited

because of the sequential updating of weights.

E. Discussion

The results we have obtained clearly demonstrate the ability

of our designs to work across different architectures and

gain major speedup. From Figure 6, it can be observed that

bcast constitutes less than 8% of the total execution time for

any configuration. This solidifies our initial claim and use

of bcast in both Algorithms 1 and 2. In addition, the total

communication cost is only a small fraction (< 15%) of the

total execution time in most cases. This highlights the high-

performance collective designs in MVAPICH2, even for large

message sizes.

The maximum speedup achievable is bound by the memory

wall. This phenomena is clearly realized if we look at the MM

time in Figure 6. The MM time is nearly the same for the last

two cases on each cluster. In fact the MM time speedup can

be approximately predicted using Equation 10. For example,

with cluster A, smax (MM) = 799.53
68.21 = 11.7 ≈ 12.85 =

73.03
5.68 = tmm1+tmm2

mmax
ms

×N
. In addition, the overall complexity of

our design (Equation 8) can be used to predict changes to

the the execution time based on the changes to evaluation

configuration and dataset.

Apart from MM, Load and NNLS are also scalability bottle-

necks. The runtime for these two tasks remains nearly constant

on increasing the numbers of processes. The data loading and

NNLS optimization algorithm portions are currently written in

MATLAB, which prevents any possible parallelization. We are

in the process of porting the code from MATLAB to C/Python

to allow additional parallelism. To address the scalability of

Reduce, we are working on co-designing with the MPI runtime

by creating a chunked and pipelined version of MPI Reduce.

These optimizations should help in improving the scalability

of our proposed designs.

VII. RELATED WORK

In the parallel computing domain, there are several studies

focused on optimizing application performance with different

parallel programming models, such as MPI, OpenMP, PGAS,

and MapReduce. For bioinformatics applications, Zhang et

al. [27] proposed a fine-grained approach to parallelize Basic

Local Alignment Search Tool for searching Protein sequences

(i.e., BLASTP), where each individual phase of sequence

search is mapped to many threads on a GPU and data-

access patterns are reordered to reduce divergent branches of

the most time-consuming phases. MR-MSPolygraph [28] is

a MapReduce-based implementation for parallelizing peptide

identification from mass spectrometry data. MSPolygraph used

a novel hybrid approach to match an experimental spectrum

against a combination of a protein sequence database and

a spectral library. Hou [29] proposed a framework called

AAlign to automatically vectorize pairwise sequence align-

ment algorithms for bioinformatics applications. Not only

for bioinformatics applications, Li et al. [30] took advantage

of the new features from MPI-3 Remote Memory Access

model to re-design a scalable Graph500 application kernel.

The authors in [31] proposed a hybrid MPI + OpenSHMEM

approach to optimize the original MiniMD [32] application,

which is a simple proxy for the force computations in a

typical molecular dynamics applications. Kannan et al. [33]

proposed a parallel algorithm to compute the non-negative

factorization of a matrix. They present a distributed-memory

parallel algorithm based on MPI to compute sparse matrix-

matrix (SpMM) multiplication. This approach, however, can-

not be applied to LiFE since it uses STD to decompose large

matrices. In addition, their approach does not work well for

very sparse matrices, which is the case in LiFE.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented designs to parallelize the mul-

tiplication of very large and sparse multiway arrays. These

designs are used to accelerate the performance of the LiFE

method which is part of the ENCODE framework. This

method is useful in encoding dMRI, brain anatomy, and eval-

uation methods using multidimensional arrays. We proposed

MPI and MPI + OpenMP-based LiFE models (collectively

known as MPI-LiFE) and evaluated their performance on

multiple clusters. We theoretically analyzed the complexity

and speedup of our proposed models and correlated them with

the performance results. On a single node on Stampede2, we

were able to achieve a speedup of 8.7x. Overall, the maximum

speedup achievable was 8.1x on RI2, 8.7x on Stampede2, and

4.5x on Stampede. We also showed that the speedup within a

node is limited by the memory wall, which can be theoretically

modeled and used for performance prediction.

In the future, we plan to further improve the performance

and scalability of our designs by co-designing with the MPI
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library. We also plan to explore the application of our designs

for other applications using multiway arrays. Evaluation with

more datasets and configurations is also left as future work.
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[11] M.-A. Cote, G. Girard, A. Boré, E. Garyfallidis, J.-C. Houde, and M. De-
scoteaux, “Tractometer: Towards Validation of Tractography Pipelines,”
Medical Image Analysis, vol. 17, no. 7, pp. 844–857, Oct. 2013.

[12] R. L. Goldstone, F. Pestilli, and K. Börner, “Self-portraits of the
Brain: Cognitive Science, Data Visualization, and Communicating Brain
Structure and Function,” Trends in Cognitive Sciences, pp. 1–14, Jul.
2015.

[13] F. Pestilli, “Test-retest Measurements and Digital Validation for in vivo
Neuroscience.” Scientific Data, vol. 2, p. 140057, 2015.
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