
Designing Virtualization-aware and Automatic
Topology Detection Schemes for Accelerating

Hadoop on SR-IOV-enabled Clouds
Shashank Gugnani, Xiaoyi Lu, Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering
The Ohio State University

Columbus, OH USA 43210
Email: {gugnani.2, lu.932, panda.2}@osu.edu

Abstract—Hadoop is gaining more and more popularity in
virtualized environments because of the flexibility and elasticity
offered by cloud-based systems. Hadoop supports topology-
awareness through topology-aware designs in all of its major
components. However, there exists no service that can automat-
ically detect the underlying network topology in a scalable and
efficient manner, and provide this information to the Hadoop
framework. Moreover, the topology-aware designs in Hadoop
are not optimized for virtualized platforms. In this paper, we
propose a new library called Hadoop-Virt, based on RDMA-
Hadoop, which provides with an automatic topology detection
module and virtualization-aware designs in Hadoop to fully take
the advantage of virtualized environments. Our experimental
evaluations show that Hadoop-Virt delivers upto 34% better
performance in the default execution mode and upto 52.6% better
performance in the distributed mode as compared to default
RDMA-Hadoop for SR-IOV-enabled virtualized clusters.

Keywords-Virtualization, Topology-awareness, Hadoop, Big
Data

I. INTRODUCTION
The growing demand for Big Data has fueled a revolution

in cloud computing [8], [9], [10]. Enterprise users, being the
main producers and consumers of Big Data, experience highly
variable workloads. For these users, cloud computing offers
attractive solutions in the form of scalability, flexibility and
reliability [11]. Thus, the combination of Big Data and cloud
computing is extremely relevant these days, especially in the
enterprise community.

Until a few years back, most people had concerns about the
performance of virtualized platforms. However, over time, and
with advancements in virtualization technology, most of these
concerns have been resolved. In addition, the introduction of
containers [12] has only increased the popularity of cloud
computing. One of the biggest challenges in the adoption
of cloud computing was virtualized I/O. However, with the
introduction of Single-Root I/O Virtualization (SR-IOV) [13],
this challenge has been alleviated as well. With SR-IOV,
a single PCI Express (PCIe) device can be presented as
multiple virtual devices, and each of these virtual device can
be allocated to a VM. Many studies [14], [15], [16] have
shown that SR-IOV can deliver near-native I/O performance,

*This research is supported in part by National Science Foundation grants
#CNS-1419123, #IIS-1447804, and #ACI-1450440.

which is much better than the software-based approaches used
earlier [17].

Since many scientific applications are becoming extremely
computationally demanding, Big Data systems are becom-
ing increasingly complex and large. As systems become
large and distributed, the topology of the cluster becomes
increasingly important. Each traversal of a switch (hops)
between two nodes adds a certain delay to the communication
time. Several studies [18], [19] have shown that topology-
aware communication can help reduce network congestion
and significantly improve performance. Thus, both topology
detection and topology-aware communication are necessary
for obtaining the best performance. Hadoop, one of the most
popular Big Data stacks, already has support for topology-
aware communication through topology-aware designs in all of
its major components. However, the designs are not optimized
for virtualized platforms. Moreover, there exists no support
for automatically detecting the topology and exposing it to
the Hadoop framework in SR-IOV-enabled InfiniBand clusters.
So, the user has to manually discover the network topology
and provide it to Hadoop.

When Hadoop is run in virtualized environments, there is
an added overhead of the virtualization layer. Even advance-
ments in virtualization technology cannot fully eliminate this
overhead. To obtain best performance, Hadoop itself should be
optimized for virtual clusters. There have been several works
which try to enhance the performance of Hadoop in virtualized
environments. Table I shows the comparison of our paper with
related papers. Our work is unique in the sense that it provides
with virtualization-awareness in all major components. All
other papers provide virtualization-aware designs in only one
or a maximum of two components. In addition, most of the
other papers don’t consider the problem of topology detection.
This leads us to the following broad challenges:

1) How can the cluster topology be automatically detected
in a scalable and efficient manner and be exposed to the
Hadoop framework?

2) How can we design virtualization-aware policies in
Hadoop for efficiently taking advantage of the detected
topology?

3) Can the proposed policies improve the performance and
fault tolerance of Hadoop on virtualized platforms?9781-5090-1445-3/16$31.00 c© 2016 IEEE (CloudCom’16)



Virtualization-awareness Topology detection RDMA-enabled designs
YARN MapReduce HDFS Automatic detection Heterogeneous support

[1], [2] ×
√ √

× × ×
[3], [4] ×

√
× × × ×

[5] ×
√ √ √

× ×
[6] × ×

√
× × ×

[7]
√

× × × × ×
This paper

√ √ √ √ √ √

Table I
COMPARISON WITH RELATED WORKS

Apache Hadoop [6] is an open-source Big Data stack, which
has become extremely popular in recent years. It has become
the primary package used for Big Data analytics. Remote Di-
rect Memory Access (RDMA) is a feature available in modern
networking interconnects like InfiniBand [20]. RDMA allows
one node to directly access the memory of a remote node,
without any CPU involvement from the remote node. RDMA-
Hadoop [21] is a publicly available stack based on Apache
Hadoop which provides with RDMA-enhanced designs in
Hadoop for RDMA-enabled clusters.

In this paper, we propose a new library called Hadoop-
Virt, based on RDMA-Hadoop, which has virtualization-aware
components and support for automatic topology detection
through a specialized topology detection module, for taking
full advantage of virtualized systems. To summarize, the main
contributions of this paper are as follows:

1) Virtualization-aware policies for map task scheduling
and container allocation

2) Topology detection module for automatic topology de-
tection of Hadoop clusters, including detection of VM
placement on physical nodes for virtualized clusters

3) Support for heterogeneous clusters (with bare-metal
nodes and VMs) for the policies created above and
within Hadoop itself

Our experimental evaluations show that Hadoop-Virt deliv-
ers upto 34% better performance in the default execution mode
and upto 52.6% better performance in the distributed mode
as compared to default RDMA-Hadoop for SR-IOV-enabled
virtualized clusters.

The rest of this paper is organized as follows. Section II
presents an overview of InfiniBand and RDMA-Hadoop. Sec-
tion III describes the proposed designs. Section IV presents
our performance evaluation results. We discuss related work
in Section V and conclude our work in Section VI.

II. BACKGROUND
A. InfiniBand

InfiniBand [20] is a networking interconnect that delivers
high performance and is widely used in supercomputers for
high performance computing. The latest TOP500 [22] rankings
released in June 2016 show that more than 40% of the
top 500 supercomputers use InfiniBand as their networking
interconnect. Remote Direct Memory Access (RDMA) is
one of the main features of InfiniBand. Through RDMA, a
node can directly access the CPU memory of a remote node
without any involvement from the remote node. InfiniBand
communication is processed in userspace and carried out in

a ‘zero-copy’ manner. InfiniBand uses hardware offload for
all protocol processing, resulting in high bandwidth and low
latency communication.

B. RDMA-Hadoop
RDMA-Hadoop [21] is a publicly available library built on

Apache Hadoop that can be used to exploit the advantages of
RDMA on RDMA-enabled clusters for Big Data applications.
RDMA-Hadoop provides with high performance designs for
HDFS [23], MapReduce [24], and Remote Procedure Call
(RPC) [25] components which are optimized for RDMA-
enabled clusters. The HDFS plugin can be operated in multiple
modes: HHH - the default mode, HHH-M - with support for
in-memory I/O operations, and HHH-L - for use with Lustre
filesystem. In addition, it has policies which make efficient
use of heterogeneous storage devices like SSD, HDD, RAM
Disk, and Lustre. The MapReduce plugin has an advanced
design that features RDMA-based shuffle, pre-fetching of map
output, and optimized overlapping of different MapReduce
stages. The RPC plugin features RDMA-based data transmis-
sion, and JVM-bypassed buffer management with smart buffer
allocation.

III. PROPOSED DESIGN
In this work, we propose a new library called Hadoop-Virt.

This package has virtualization-aware components for virtual
Hadoop clusters. The different components of the proposed
design are described in detail below.

HDFS

YARN

H
ad

oo
p 

C
om

m
on

MapReduce
HBase Others

Virtual Machines Bare-Metal nodesContainers

Big Data Applications

To
po

lo
gy

 D
et

ec
tio

n 
M

od
ul

e Map Task Scheduling 
Policy Extension

Container Allocation 
Policy Extension

Application Layer

Middleware Layer

Hardware Layer

CloudBurst MR-MS Polygraph Others

Virtualization Aware 
Block Management

Figure 1. Overview of the Hadoop-Virt Architecture

A. Overview of Hadoop-Virt
Hadoop-Virt has virtualization-aware components in all the

four main Hadoop components - HDFS [26], YARN [27],
MapReduce [28], and Hadoop Common. Figure 1 shows
the Hadoop-Virt architecture. The components highlighted in



dashed boxes are the additions we have made to the Hadoop
framework. We provide with a topology detection module in
Hadoop Common. We propose extensions to the container
allocation policy in YARN and map task scheduling policy
in MapReduce to add a virtualization layer. We also provide
with virtualization-aware block management in HDFS. Thus,
in Hadoop-Virt, all components are optimized for virtualized
clusters.

VM3

VM4

VM1

VM2

Rack 1

Host 2Host 1

Resource Manager

VM5 VM6

Rack 2

Host 3

Default Hadoop Policy

1. Node local
2. Rack local
3. Off-rack

Container 
Request

Hadoop-Virt Policy

1. Node local
2. Host local
3. Rack local
4. Off-rack

1 1 2 3

2 2 2 3
3 43 4

Figure 2. YARN Container Allocation Policy

B. Virtualization Aware Policies
In SR-IOV-enabled virtualized environments, VMs co-

located on the same host can communicate with each other
through loopback mechanism. Since loopback is faster than
having to go through network switches, communication be-
tween co-located VMs/containers will be faster than com-
munication between VMs located on different hosts. Thus,
to make network communication more efficient, the number
of Host local communications should be maximized, where
Host local communication means communication between co-
located VMs. We define “Host” as the hypervisor or bare-metal
node on which a VM is placed and “Host local” (for a VM)
to signify VMs which are on the same Host (hypervisor). The
Host name will give us an indication of which VMs are on
the same hypervisor, since their Host names will be the same.

To take advantage of the benefits of Host local commu-
nication, we propose virtualization-aware policies. These are
described in detail below.

1) YARN Container Allocation: Container allocation plays
an important role in increasing the locality of communication.
For example, to schedule a map task on a node, we first need
to allocate a container on that node. Thus, map task scheduling
depends on container allocation for locality in communication.
Locality for container allocation is with regard to the node on
which a container is requested. By default, YARN will allocate
containers in the order - Node local, Rack local, and Off-rack.
So, if we are running Hadoop in a virtualized environment,
and we are not able to allocate a container on a node local
node, it will be allocated on either a rack local node or an
off-rack node. However, this is not optimal, since we didn’t
consider Host local nodes before Rack local nodes, which will
provide with better locality. Thus, we extended this policy to
add a Host local layer. The new policy allocates container in
the order - Node local, Host local, Rack local, and Off-rack.

Figure 2 shows the default and proposed container allocation
policies. We can observe that if the ResourceManager fails to
allocate a container on VM 2, it will be allocated on either
VM 1, 3, or 4 under the default policy. Thus, there is a good
chance that the container will be allocated on VM 3 or 4,
which are not on the same host as VM 2, and thus not optimal
for locality. The proposed policy will allocate the container on
VM 1 if it fails to allocate the container on VM 2.

2) Map Task Scheduling: Map task scheduling tries to
ensure that the map task is scheduled on a node which is
as close (in terms of locality) to the node where the data is
placed. This locality aware scheduling is important to reduce
network traffic and reduce communication time. Similar to
the container allocation policy, the map task scheduling will
assign tasks in the order - Node local, Rack local, and Off-
rack. This is not optimal, since we didn’t consider Host local
nodes before Rack local nodes, which will deliver better
communication locality. The new policy assigns map tasks
in the order - Node local, Host local, Rack local, and Off-
rack. This ensures that the communication pattern and cost is
optimal for virtualized environments.

C. Automatic Topology Detection
Topology-awareness is important in the execution of ap-

plications on large scale clusters. Hadoop has support for
topology-aware execution. However, the main problems with
the existing topology-aware designs in Hadoop are twofold.
Firstly, there is no support for the automatic detection of
topology of Hadoop clusters. So, the user has to create a
topology file manually and activate the topology-aware designs
to fully utilize the benefits offered by these designs. Fur-
thermore, the existing topology-aware designs don’t offer any
support for virtualized clusters. Secondly, modern virtualized
clusters support automatic VM migration for load-balancing
and energy saving. Hence, the topology of a virtual Hadoop
cluster may change at any time. Having up-to-date topology
information is essential to ensure that the internal topology-
aware algorithms deliver best performance. Hadoop supports
dynamic topology detection through a topology detection
script (to be provided by the user) which is executed each
time the topology information is needed. However, this is
not efficient since the topology detection script does take a
considerable amount of time to execute.

Thus, there is a need for virtualization-aware policies and
automatic topology detection to enable users to reap the
benefits of topology-awareness without the need to do any
work manually. We propose a topology detection module for
Hadoop over InfiniBand networks, which will not only detect
the overall network topology, but will also get information
about the VM placement (i.e. which VMs are co-located on
the same host). This information will be useful when using the
virtualization-aware policies proposed earlier. So, our topology
detection module should be able to find information about
the rack a node is placed in and the host on which the
VM/Container resides. To get this information and create a
topology file that can be used as input to Hadoop-Virt, we



VM1

VM2

Rack 1

Host 1

Map Task

Map Task

Map Task

Map Task

172.16.0.1        Rack-S-c0424
172.16.0.1        Host-0xa8543

172.16.0.2        Rack-S-c0424
172.16.0.2        Host-0xa8543

172.16.0.3        Rack-S-c0424
172.16.0.3        Host-0xb6754

172.16.0.4        Rack-S-c0424
172.16.0.4        Host-0xb6754

Map Phase
- Get rack & 

host 
information

Map key-value Splitting
- Generate key-value pairs

Reduce Task

Shuffle
 & Sort

172.16.0.1        /Rack-S-c0424/Host-0xa8543
172.16.0.2        /Rack-S-c0424/Host-0xa8543
172.16.0.3        /Rack-S-c0424/Host-0xb6754
172.16.0.4        /Rack-S-c0424/Host-0xb6754

Reduce Phase
- Output final 

topology file

Final Output
- The topology 

file

Co-located VMs

Co-located VMs

VM3

VM4

Host 2

Figure 3. MapReduce-based Utility for Topology Detection

propose two methods - a topology detection script and a
MapReduce-based utility for topology detection. Our topology
detection module is currently implemented only for InfiniBand
networks. However, we implemented the InfiniBand specific
part of the module as a plugin so that plugins for other network
types can be easily created and inserted into the module.
The detailed description of our topology detection script and
MapReduce-based utility is presented below.

1) Topology Detection Script: To detect the InfiniBand
network topology, we used the ibnetdiscover command that
is provided with the InfiniBand OFED package [29]. While
this command will provide us with the network topology of
the InfiniBand network, it will just provide us with the details
about the bare-metal hosts and not the VMs. To alleviate
this issue, we used the GUID (Global Unique Identifier) of
the HCA (Host Channel Adapter) to parse the information
about the network connectivity of the VMs. Since the GUID
is associated with the HCA, it is common for the VMs and
the Host for those VMs. Hence, we can use the GUIDs to find
the network topology of the VMs.

In addition to finding the network topology, we also need
to find the VM placement information. We directly use the
GUID of the HCA as the Host name of each node, since the
GUID is common for all VMs on the same node.

2) MapReduce-based Utility for Topology Detection: Al-
though the topology detection script can successfully get
the topology information of the Hadoop cluster, it is not
scalable or fault tolerant. This is because it is run on a
single node and is based on ssh. Thus, we propose a scalable
MapReduce-based utility for detecting the cluster topology.
For the MapReduce utility, we run one map task on each slave
of the Hadoop cluster and one reduce task in total. For the
input of the map tasks, we create dummy files of negligible
size. The map task gets the Rack and Host name in the same
way as the topology detection script. It then outputs two key-
value pairs, one for the Rack and one for the Host, where the
key is the IP address of the slave and the value is the Rack/Host
name. The reduce task combines the key-value pairs in such a
way that the output will directly give us the desired topology
file. Figure 3 shows the working of the application. Since the
utility is based on the MapReduce framework, it is inherently
scalable and fault tolerant. In addition, the final topology file
is also stored on HDFS, increasing the level of fault tolerance.

We propose two modes of operation for our topology
detection module - static and dynamic. In the static mode,
we provide the topology detection script and MapReduce
application to the user. The user can run either the script
or the utility, and it will create a topology file, which is
then used by Hadoop for getting the topology information.
In the dynamic mode, there are three sub-modes. The first
sub-mode uses the topology detection script, the second uses
the MapReduce-based utility, and the third uses both. In the
first sub-mode, the topology detection script is run the first
time the topology information is needed and this information
is then cached. We then used this cached information for
further topology requests, until we receive a certain number of
topology requests (which is configurable via a parameter), after
which we run the topology detection script again. Since the
script is not run each time, it should have negligible overhead.
In the second sub-mode, the topology detection module is run
in a separate thread. This thread wakes up every few minutes
and checks the number of jobs running on the Hadoop cluster.
If the cluster is idle, then it runs the MapReduce application
for detecting the cluster topology. Since we only run the utility
when the cluster is idle, it should not affect the performance of
any applications running on the cluster. In the third sub-mode
(or Hybrid mode), we dynamically select from the first and
second sub-modes, based on which mode is the best for the
number of nodes in the cluster. From our evaluation results
(Section IV-F) we discovered that the script is more efficient
for a small sized cluster, whereas the MapReduce application
is better for large sized clusters. Thus, we set a threshold value
(configurable via a parameter) for the number of nodes in the
cluster, below which the script will be run, and above which
the MapReduce application will be run. The default value of
this parameter is tuned for our experimental testbed. However,
this can easily be tuned for any cluster.
D. Virtualization Aware Block Management

For the replication of a block, HDFS places the first block
on the primary node, the second block on a node on a different
rack than the first node, and the third block on a node on the
same rack as the primary node. With this policy, it is possible
that HDFS places blocks on VMs which are on the same
physical host, as shown in Figure 4(a). This is not ideal from a
fault tolerance perspective, since a failure of the physical host
will result in loss of both the replicas. Hadoop already has



Node 1

VM 1

DN

VM 2

Node 2

VM 3 VM 4

Node 1

VM 1

DN

Node 2

DNDN DN

Blk1 Blk2 Blk1 Blk2 Blk3 Blk4 Blk3 Blk4

Node 1

VM 1

DN

VM 2

Node 2

VM 3 VM 4

Node 1

VM 1

DN

Node 2

DNDN DN

Blk1 Blk2 Blk3 Blk4 Blk1 Blk2 Blk3 Blk4

(a) Default block placement policy

Node 1

VM 1

DN

VM 2

Node 2

VM 3 VM 4

Node 1

VM 1

DN

Node 2

DNDN DN

Blk1 Blk2 Blk1 Blk2 Blk3 Blk4 Blk3 Blk4

Node 1

VM 1

DN

VM 2

Node 2

VM 3 VM 4

Node 1

VM 1

DN

Node 2

DNDN DN

Blk1 Blk2 Blk3 Blk4 Blk1 Blk2 Blk3 Blk4

(b) Virtualization-aware block placement policy
Figure 4. Block placement scenarios for different block placement policies

support for virtualization-aware block management (VABM),
which can be enabled using a parameter. VABM ensures that
replicas of the same block are not placed on VMs on the
same physical host. Figure 4 shows a block placement scenario
for 2 blocks on a 4 VM, 2 physical node Hadoop cluster
with a replication factor of 2. With the default placement
policy scenario, if one of the physical nodes crashes, we will
loose two blocks, since both replicas of each block are on the
same physical host. But, with the virtualization-aware policy,
replicas of the block are not placed on co-located VMs. Hence,
failure of any physical node will not lead to any data loss.
VABM ensures that the fault tolerance level of virtual cluster
is the same as bare-metal clusters. However, VABM is not
compatible with the existing container allocation and map
task scheduling policies because of different requirements for
the format of the cluster topology information. We modified
VABM to make it compatible with these policies as well as
our extensions to these policies.

E. Support for Heterogeneous clusters
Hadoop clusters are very often built using commodity

hardware. Each system might have a different configuration
and attached storage devices. Thus, to get the best performance
out of the available hardware, heterogeneous clusters (with
bare-metal nodes and VMs) are the best option. For example, if
some nodes have a large number of cores, then launching VMs
on those nodes will most likely give us the best performance.
If we have less number of cores on a node, using it directly
will most likely give us the best performance. This is because
with large number of cores, the physical node might not be
able to fully utilize all the available cores. However, when
running Hadoop on this heterogeneous cluster, we have to
make sure that the topology detection logic and virtualization-
aware policies are aware of the heterogeneity of the cluster,
which is not the case with default Hadoop.

The policies described above are for virtualized environ-
ments. However, there may be times where users may want
to run a heterogeneous cluster or even a bare-metal cluster.
So, we need to make some changes so that the policies
proposed above can be optimally be applied in these cases.
For heterogeneous clusters, we used the proposed policies,
but extended the topology detection module to ensure that the

policies are correctly and optimally applied to these cases.
The extended topology detection module selects a unique Host
name (the hostname) for each bare-metal node. Since the
hostname is unique, the Host name for each bare-metal node
will be unique. Thus, there will be no Host local node for
the bare-metal node, which will ensure that policies described
above will work correctly for bare-metal nodes. At the same
time, the topology detection module will work the same for
any VM, and we will be able to fully utilize the benefits of
our proposed policies.

IV. PERFORMANCE EVALUATION
A. Experiment Setup

Our testbed consists of 9 physical nodes on the Chameleon
Cloud [30], where each node has a 24-core 2.3 GHz In-
tel Xeon E5-2670 (Haswell) processor with 128 GB main
memory and is equipped with Mellanox ConnectX-3 FDR
(56 Gbps) HCAs and PCI Gen3 interfaces. We use CentOS
Linux 7.1.1503 (Core) with kernel 3.10.0-229.el7.x86 64.
In addition, we use the Mellanox OpenFabrics Enterprise
Distribution MLNX OFED LINUX-3.0-1.0.1 to provide the
InfiniBand interface with SR-IOV support, OpenJDK 1.7.0 91
as the Java package, and KVM as the Virtual Machine Monitor
(VMM). For consistency, we use the same OS and software
versions for the virtual machines as well.

We have used the standard benchmark suite that comes with
Apache Hadoop (v 2.7.1) for our experiments. All benchmarks
are run using RDMA-Hadoop 0.9.9 (based on Apache Hadoop
2.7.1) and Hadoop-Virt (based on RDMA-Hadoop 0.9.9). The
results have been averaged over three runs to ensure fair
comparison.

We run 65 VMs in total, with 8 VMs each on 8 bare-metal
nodes (totaling 64 VMs) to be used as Hadoop slave nodes,
and 1 VM on 1 bare-metal node to be used as the Hadoop
master node. 70% of the RAM disk is used for data storage.
HDFS block size is kept to 256 MB. The NameNode runs in
the master node of the Hadoop cluster and the benchmark is
run in the NameNode. Each NodeManager is configured to
assign a minimum of 4 GB memory per container. We also
make sure that the total number of containers launched per
bare-metal node is the same for all cases. This ensures that in
all cases the total physical resources used are the same.

Traditionally, Hadoop is deployed with each slave node run-
ning 1 NodeManager and 1 DataNode. However, in virtualized
environments, it may be beneficial to separate the data (HDFS)
and compute (YARN) components of Hadoop, so they can
be scaled independently, and any change in one component
doesn’t affect the other. Thus, for deploying Hadoop, we use
2 modes - Default Mode and Distributed Mode. In the Default
Mode, we run Hadoop in the traditional manner, and in the
Distributed Mode, we run NodeManagers and DataNodes in
separate nodes. So, in our testbed, for the Default Mode we
have 64 slaves nodes running 1 NodeManager and 1 DataNode
each and for the Distributed Mode, we have 32 slave nodes
running 1 NodeManager each and 32 additional slave nodes
running 1 DataNode each. The Distributed Mode, thus allows
us to scale HDFS and YARN independently allowing for more



 0

 2000

 4000

 6000

 8000

 10000

 12000

20 40 60

T
o

ta
l 

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Data Size (GB)

RDMA-Hadoop
Hadoop-Virt

(a) TestDFSIO Write Throughput

 0

 50

 100

 150

 200

 250

 300

20 40 60

E
x

ec
u

ti
o

n
 T

im
e 

(s
)

Data Size (GB)

RDMA-Hadoop
Hadoop-Virt

(b) TeraSort Execution Time

 0

 200

 400

 600

 800

 1000

20 40 60

E
x

ec
u

ti
o

n
 T

im
e 

(s
)

Data Size (GB)

RDMA-Hadoop
Hadoop-Virt

(c) Sort Execution Time

Figure 5. Performance Comparison of RDMA-Hadoop and Hadoop-Virt for the Default Mode

 0

 100

 200

 300

 400

 500

 600

20 40 60

E
x

ec
u

ti
o

n
 T

im
e 

(s
)

Data Size (GB)

RDMA-Hadoop
Hadoop-Virt

(a) Wordcount Execution Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

20 40 60

E
x

ec
u

ti
o

n
 T

im
e 

(s
)

Data Size (GB)

RDMA-Hadoop
Hadoop-Virt

(b) PageRank Execution Time

 0

 200

 400

 600

 800

 1000

20 40 60

E
x

ec
u

ti
o

n
 T

im
e 

(s
)

Data Size (GB)

RDMA-Hadoop
Hadoop-Virt

(c) Sort Execution Time

Figure 6. Performance Comparison of RDMA-Hadoop and Hadoop-Virt for the Distributed Mode

control and flexibility. Figure 7 shows the setup of the two
deployment modes for 4 VMs on 2 nodes. We run 96 map
tasks and 48 reduce tasks in the Default Mode and 48 map
tasks and 24 reduce tasks in the Distributed Mode.

Node 1

VM 1

DN NM

VM 2

DN NM

Node 2

VM 3

DN NM

VM 3

DN NM

Node 1

VM 1

DN

VM 2

Node 2

VM 3 VM 4

Node 1

DN NM DN

Node 2

VM 3

DN NM

VM 4

DN NM

Node 1

VM 1

DN

Node 2

NM DN NM

(a) Default Mode

Node 1

VM 1

DN NM

VM 2

DN NM

Node 2

VM 3

DN NM

VM 3

DN NM

Node 1

VM 1

DN

VM 2

Node 2

VM 3 VM 4

Node 1

DN NM DN

Node 2

VM 3

DN NM

VM 4

DN NM

Node 1

VM 1

DN

Node 2

NM DN NM

(b) Distributed Mode
Figure 7. Hadoop Deployment Modes

B. Default Mode
For the Default Mode, we tested our proposed design

with TestDFSIO Write, TeraSort, and Sort. Figure 5 shows
the results of our analysis. We see upto 34%, 8.8%, and
9% improvement with Hadoop-Virt as compared to RDMA-
Hadoop for TestDFSIO Write, TeraSort, and Sort, respectively.

C. Distributed Mode
For the Distributed Mode, we ran tests with Wordcount,

PageRank, and Sort. Figure 6 shows the results of our analysis.
We see upto 35.5%, 34.7%, and 52.6% improvement with
Hadoop-Virt as compared to RDMA-Hadoop for Wordcount,
PageRank, and Sort, respectively. Overall, we see much more
improvement for the Distributed Mode as compared to the

Default Mode. This is because in the Default Mode, most of
the map tasks and container allocations are Node local. For the
Distributed Mode, there are no Node local map task or con-
tainer allocations since the NodeManagers and DataNodes are
running on separate nodes. Thus in this case, RDMA-Hadoop
makes all Rack local allocations, whereas Hadoop-Virt makes
all Host local allocations, reducing inter-host network traffic
and leading to large performance improvements.
D. Virtualization Aware Block Management

To see the impact of virtualization-aware block manage-
ment (VABM) on performance and fault tolerance, we ran
some experiments with Apache Hadoop and Hadoop-Virt.
For measuring fault-tolerance in virtualized environments, we
define a new term known as ‘Fault Tolerance Level’. The
Fault Tolerance Level of a Hadoop cluster is defined as
the maximum number of bare-metal node failures that the
cluster can handle without data loss. To find the value of
this metric, we first generated 60 GB of data using TeraGen,
then shut down bare-metal nodes and checked the status of
data blocks using the Hadoop fsck command. Figure 8 shows
the results of this experiment. Firstly, we observe that overall,
Hadoop-Virt performs much better than Apache Hadoop. This
can be attributed to the RDMA-enabled and virtualization-
aware designs in Hadoop-Virt. Secondly, enabling VABM does
not have a significant impact on performance. However, it
increases the Fault Tolerance Level of the cluster. Finally, we
observe that Hadoop-Virt with VABM enabled delivers the
best performance as well as Fault Tolerance Level.
E. Application Level Evaluation

To see whether our proposed designs actually show benefits
at the application level, we did some evaluations with two



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

20 40 60

T
o

ta
l 

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Data Size (GB)

Apache Hadoop (VABM disabled)
Apache Hadoop (VABM enabled)

Hadoop-Virt (VABM disabled)
Hadoop-Virt (VABM enabled)

(a) TestDFSIO Write Throughput

 0

 10000

 20000

 30000

 40000

 50000

20 40 60

T
o

ta
l 

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Data Size (GB)

Apache Hadoop (VABM disabled)
Apache Hadoop (VABM enabled)

Hadoop-Virt (VABM disabled)
Hadoop-Virt (VABM enabled)

(b) TestDFSIO Read Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 3

F
au

lt
 T

o
le

ra
n

ce
 L

ev
el

Replication Factor

Apache Hadoop (VABM disabled)
Apache Hadoop (VABM enabled)

Hadoop-Virt (VABM disabled)
Hadoop-Virt (VABM enabled)

(c) Fault Tolerance Level

Figure 8. Virtualization-aware Block Management (VABM)

 0

 20

 40

 60

 80

 100

 120

Default Distributed

E
x

ec
u

ti
o

n
 T

im
e 

(s
)

Mode

RDMA-Hadoop
Hadoop-Virt

(a) CloudBurst Execution Time

 0

 50

 100

 150

 200

 250

 300

 350

Default Distributed

E
x

ec
u

ti
o

n
 T

im
e 

(s
)

Mode

RDMA-Hadoop
Hadoop-Virt

(b) Self-join Execution Time

Figure 9. Application Level Evaluation

 0

 10

 20

 30

 40

 50

 60

16 32 64

E
x
ec

u
ti

o
n
 T

im
e 

(s
)

Number of Nodes

Script
MapReduce Utility

Hybrid

Figure 10. Performance Comparison of topol-
ogy detection script, MapReduce-based utility,
and Hybrid Mode

applications - CloudBurst [31] and Self-join from the PUMA
benchmark suite [32]. For CloudBurst, we used the sample
data provided with the application, while for Self-join we used
30 GB of data. Figure 9 shows the results of our analysis.
We observe 13.8% and 24% improvement in execution time
with the Default Mode, and 30.5% and 55.7% improvement
with the Distributed Mode for CloudBurst and Self-join,
respectively. We see improvement with both modes, which
proves the efficiency of our approach.

F. Topology Detection

We proposed two methods to detect the underlying network
topology of the Hadoop cluster - topology detection script and
MapReduce-based utility. To find which method works better,
we ran both methods on our testbed and varied the number of
nodes (VMs). We also compared these results with the Hybrid
mode of the topology detection module. The result of this
analysis is shown in Figure 10. We observe that the script
doesn’t scale well and the execution time increases linearly.
The MapReduce-based utility scales extremely well and the
execution time remains more or less stable on increasing the
number of nodes. Since the script is run on a single node and
is based on ssh, whereas the MapReduce-based utility is built
on the scalable and distributed MapReduce framework, these
results are expected. That said, we observe that the execution
time of the script is smaller as compared to the MapReduce-
based utility for 16 and 32 nodes. Thus, for a small sized
cluster, the script is a better option, whereas for a large sized
cluster, the MapReduce-based utility is a better option. The
Hybrid mode thus automatically selects the best out of these
two options and delivers the best performance.

V. RELATED WORK

There have been several papers which propose new tech-
niques for improving Hadoop performance in virtualized en-
vironments. In this section, we discuss the works most relevant
to our paper.

CAM [5] is a topology-aware resource manager to minimize
network flow cost for cloud platforms. It uses a flow-network
based algorithm to extract best performance for MapReduce
under the specified constraints. CAM also provides with a
topology server to get information about the cluster topology.
However, the implementation of the topology detection process
is not described.

Hammoud et al. [33] propose a Locality-Aware Reduce Task
Scheduler (LARTS) for enhancing MapReduce performance
in Hadoop. LARTS attempts to maximize data local reduce
tasks and at the same time prevent scheduling delays, skew
and system underutilization.

A white paper by VMware [2] proposes virtualization exten-
sions to Hadoop. In their designs, they propose extensions to
task scheduling and replica management in Hadoop. However,
their work is based on Hadoop 1.0 and they don’t consider
detection of topology in their work.

Bu et al. [3] present an approach to reduce interference and
increase locality in task scheduling for MapReduce applica-
tions in virtual clusters. Their approach includes an adaptive
delay scheduling algorithm for improving data locality and an
interference aware scheduling policy.

In [7], Nanduri et al. propose an approach for increasing job
throughput in the MapReduce framework. They use machine
learning to co-locate compatible jobs and maintain resource
balance. They show significant improvement when comparing



their approach with the default capacity scheduler in Hadoop.
In [4], Ibrahim et al. present a novel system called

CLOUDLET, an implementation of the MapReduce frame-
work optimized for virtualized platforms. Their system em-
phasizes on reducing the amount of data sent over the network
by performing locality-aware operations.

Although all of these papers present topology-aware designs
to improve Hadoop performance in virtualized clusters, most
of them do not consider topology detection or how it can be
automated.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new library called Hadoop-Virt

which provides with virtualization and topology aware designs
in Hadoop as well as an automatic topology detection module
for virtualized clusters. Hadoop-Virt provides virtualization-
awareness in all of the four main Hadoop components. Our
designs included extensions to the map task scheduling and
container allocation policies in Hadoop to improve perfor-
mance in virtualized environments. Our proposed topology de-
tection module automatically detects the underlying topology
of the cluster and provides it to the Hadoop framework. It has
multiple modes of operation (static and dynamic) and provides
with different methods (Script and MapReduce-based utility)
to detect the cluster topology. Our evaluations show that
Hadoop-Virt outperforms RDMA-Hadoop in both the Default
and Distributed Modes of deployment at the benchmark as
well as the application level. Also, with virtualization-aware
block management, Hadoop-Virt provides the best level of
fault tolerance.

In the future, we plan to make additional improvements
to different Hadoop components for better performance in
virtualized environments like reducing resource contention
between co-located VMs. We also plan to add support for
containers.

REFERENCES

[1] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: Locality-aware
Resource Allocation for MapReduce in a Cloud,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011, p. 58.

[2] VMware, “Hadoop Virtualization Extensions on VMware vSphere 5,”
Technical White Paper. VMware, Inc, 2012.

[3] X. Bu, J. Rao, and C.-z. Xu, “Interference and Locality-Aware Task
Scheduling for MapReduce Applications in Virtual Clusters,” in Pro-
ceedings of the 22nd international symposium on High-performance
parallel and distributed computing. ACM, 2013, pp. 227–238.

[4] S. Ibrahim, H. Jin, B. Cheng, H. Cao, S. Wu, and L. Qi, “CLOUDLET:
Towards MapReduce Implementation on Virtual Machines,” in Proceed-
ings of the 18th ACM international symposium on High performance
distributed computing. ACM, 2009, pp. 65–66.

[5] M. Li, D. Subhraveti, A. R. Butt, A. Khasymski, and P. Sarkar, “CAM:
A Topology Aware Minimum Cost Flow Based Resource Manager for
MapReduce Applications in the Cloud,” in Proceedings of the 21st
international symposium on High-Performance Parallel and Distributed
Computing. ACM, 2012, pp. 211–222.

[6] “Apache Hadoop,” http://www.hadoop.apache.org.
[7] R. Nanduri, N. Maheshwari, A. Reddyraja, and V. Varma, “Job Aware

Scheduling Algorithm for MapReduce Framework,” in Cloud Computing
Technology and Science (CloudCom), 2011 IEEE Third International
Conference on. IEEE, 2011, pp. 724–729.

[8] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The Rise of Big Data on Cloud Computing: Review and
Open Research Issues,” Information Systems, vol. 47, pp. 98–115, 2015.

[9] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto, and R. Buyya,
“Big Data Computing and Clouds: Trends and Future Directions,”
Journal of Parallel and Distributed Computing, vol. 79, pp. 3–15, 2015.

[10] Y. Yan, C. Chen, and L. Huang, “A Productive Cloud Computing Plat-
form Research for Big Data Analytics,” in 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2015, pp. 499–502.

[11] R. Grossman, “The Case for Cloud Computing,” IT Professional, vol. 11,
no. 2, pp. 23–27, March 2009.

[12] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux Journal, vol. 2014, no. 239, p. 2,
2014.

[13] “PCI-SIG Single-Root I/O Virtualization Specification,”
http://www.pcisig.com/specifications/iov/.

[14] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High
Performance Network Virtualization with SR-IOV,” Journal of Parallel
and Distributed Computing, vol. 72, no. 11, pp. 1471 – 1480, 2012,
communication Architectures for Scalable Systems.

[15] J. Liu, “Evaluating Standard-Based Self-Virtualizing Devices: A Per-
formance Study on 10 GBE NICs with SR-IOV Support,” in Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, April 2010, pp. 1–12.

[16] M. Musleh, V. Pai, J. Walters, A. Younge, and S. Crago, “Bridging the
Virtualization Performance Gap for HPC Using SR-IOV for InfiniBand,”
in Cloud Computing (CLOUD), 2014 IEEE 7th International Conference
on, June 2014, pp. 627–635.

[17] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine Monitor.” in
USENIX Annual Technical Conference, General Track, 2001, pp. 1–14.

[18] T. Agarwal, A. Sharma, A. Laxmikant, and L. V. Kalé, “Topology-
aware Task Mapping for Reducing Communication Contention on Large
Parallel Machines,” in Proceedings 20th IEEE International Parallel &
Distributed Processing Symposium. IEEE, 2006, pp. 10–pp.

[19] T. Hoefler and M. Snir, “Generic Topology Mapping Strategies for
Large-Scale Parallel Architectures,” in Proceedings of the international
conference on Supercomputing. ACM, 2011, pp. 75–84.

[20] “InfiniBand Trade Association,” http://www.infinibandta.com.
[21] “RDMA Hadoop,” http://hibd.cse.ohio-state.edu/overview/.
[22] “TOP500 Supercomputing Sites,” http://www.top500.org/.
[23] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,

H. Subramoni, C. Murthy, and D. K. Panda, “High Performance RDMA-
based Design of HDFS over InfiniBand,” in Proceedings of the In-
ternational Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012, p. 35.

[24] M. Wasi-ur Rahman, N. S. Islam, X. Lu, J. Jose, H. Subramoni, H. Wang,
and D. K. Panda, “High-Performance RDMA-Based Design of Hadoop
MapReduce over InfiniBand,” in Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th
International. IEEE, 2013, pp. 1908–1917.

[25] X. Lu, N. S. Islam, M. Wasi-ur Rahman, J. Jose, H. Subramoni, H. Wang,
and D. K. Panda, “High-Performance Design of Hadoop RPC with
RDMA over InfiniBand,” in Parallel Processing (ICPP), 2013 42nd
International Conference on. IEEE, 2013, pp. 641–650.

[26] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). IEEE, 2010, pp. 1–10.

[27] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache Hadoop
YARN: Yet Another Resource Negotiator,” in Proceedings of the 4th
annual Symposium on Cloud Computing. ACM, 2013, p. 5.

[28] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[29] Open Fabrics Enterprise Distribution, http://www.
openfabrics.org/.

[30] “Chameleon,” http://chameleoncloud.org/.
[31] M. C. Schatz, “CloudBurst: Highly Sensitive Read Mapping with

MapReduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–1369, 2009.
[32] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “PUMA: Purdue

MapReduce Benchmarks Suite,” 2012.
[33] M. Hammoud and M. F. Sakr, “Locality-Aware Reduce Task Scheduling

for MapReduce,” in Cloud Computing Technology and Science (Cloud-
Com), 2011 IEEE Third International Conference on. IEEE, 2011, pp.
570–576.


