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Abstract—Running Big Data applications in the cloud has
become extremely popular in recent times. To enable the storage
of data for these applications, cloud-based distributed storage
solutions are a must. OpenStack Swift is an object storage service
which is widely used for such purposes. Swift is one of the
main components of the OpenStack software package. Although
Swift has become extremely popular in recent times, its proxy
server based design limits the overall throughput and scalability
of the cluster. Swift is based on the traditional TCP/IP sockets
based communication which has known performance issues such
as context-switch and buffer copies for each message transfer.
Modern high-performance interconnects such as InfiniBand and
RoCE offer advanced features such as RDMA and provide high
bandwidth and low latency communication. In this paper, we
propose two new designs to improve the performance and scala-
bility of Swift. We propose changes to the Swift architecture and
operation design. We propose high-performance implementations
of network communication and I/O modules based on RDMA
to provide the fastest possible object transfer. In addition, we
use efficient hashing algorithms to accelerate object verification
in Swift. Experimental evaluations with microbenchmarks, Swift
stack benchmark (ssbench), and synthetic application workloads
reveal up to 2x and 7.3x performance improvement with our two
proposed designs for put and get operations. To the best of our
knowledge, this is the first work towards accelerating OpenStack
Swift with RDMA over high-performance interconnects in the
literature.

Keywords-OpenStack, Swift, RDMA, High-performance inter-
connects

I. INTRODUCTION

Cloud computing has become a novel computing paradigm
that has changed the way enterprise or Internet computing is
seen. The public cloud market is expected to grow by more
than 17% by the end of 2016 to a total of over $208 billion,
up from $178 billion in 2015, according to new projections
from Gartner [1]. The success story of cloud computing
as a technology is credited to the long term efforts of the
computing research community and industry companies across
the globe. SaaS (Software as a Service), PaaS (Platform as
a Service), and IaaS (Infrastructure as a Service) are the
three major cloud product sectors. IaaS supports easy and
scalable resource management and a better overall utilization
of clusters when compared to dedicated clusters. IaaS also
provides high-performance sharing of critical cluster resources
among multiple jobs using the system.
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The cloud computing paradigm motivates more and more
users to move their applications to the cloud or build private
clouds inside their own organizations. OpenStack [2] is one
of the most popular open-source solutions to build clouds and
manage cloud computing, storage, and networking resources.
OpenStack can be used to build efficient HPC clouds to
support running various applications. In order to run data-
intensive applications in the cloud efficiently, it is a must
to enable cloud-based distributed storage solutions for these
applications. OpenStack Swift is an object storage service
which is widely used for such purposes. Swift is one of the
main components of the OpenStack software package.

According to the latest OpenStack user survey [3], more
than 53% of all OpenStack deployments use Swift. In addition,
large Swift deployments are becoming more common with
24% of deployments having a total storage capacity of more
than 100 TB and 32% of deployments having more than
10,000 objects. It also reports that the primary use cases
for Swift include backup/archiving and storing Docker/VM
images, application data, and Big Data.

Although OpenStack Swift has become extremely popular
in recent times, Swift is still using traditional TCP/IP sockets
based communication which has known performance issues
such as context-switch and buffer copies for each message
transfer [4], [5]. Modern high-performance interconnects such
as InfiniBand [6] and RoCE [7] offer advanced features such
as Remote Direct Memory Access (RDMA) and provide high
bandwidth and low latency communication. InfiniBand has
been widely used in modern HPC clusters. Based on the
November 2016 TOP500 [8] ranking, 37% clusters in the
top 500 supercomputers are using InfiniBand technology. Due
to its high-performance and advanced features (e.g. RDMA),
many recent studies [9], [10], [4], [11], [12] have re-designed
popular Big Data stacks such as Hadoop, Spark, and Mem-
cached, with native RDMA operations to achieve the huge
benefits compared to the default sockets based designs with
IP-over-IB protocol.

This trend motivates us to explore possible options to
make the OpenStack Swift design efficiently take advantage
of high-performance interconnects such as InfiniBand and its
associated advanced features such as RDMA. In the process
of accelerating OpenStack Swift with RDMA, we also try to
exploit more opportunities to enhance the Swift architecture
for building efficient HPC clouds. All these issues lead us to
the following broad challenges:



1) What are the performance characteristics and bottlenecks
of the current Swift design?

2) How can high-performance and scalable RDMA-based
communication schemes be designed to reduce the
network communication time for Swift operations and
further improve overall Swift performance?

3) In addition to communication, what else can be done to
further accelerate Swift performance and scalability? For
example, how can the I/O, computation, and architecture
designs in Swift be enhanced?

To address these challenges, in this paper, we first start with
understanding the performance characteristics of the current
OpenStack Swift design. Through the breakdown analysis of
Swift operations, we identify three major bottlenecks inside
current Swift design, namely communication, I/O, and hash-
sum computation. From the architecture perspective, Open-
Stack Swift operations are heavily using the proxy server based
design, which significantly limits the overall throughput and
scalability of the Swift cluster.

Based on these observations, we propose a high-
performance design and implementation of OpenStack Swift,
called Swift-X, for building efficient HPC clouds. Swift-X has
two new designs to improve the performance and scalability
of Swift applications in its two typical usage scenarios. One
design is client-oblivious where users can benefit from our
proposed designs without the need for any modification in
the client library or any need of RDMA-capable networking
devices on the client node. The second design is a metadata
server-based design, which completely overhauls the existing
design of put and get operations in Swift. Instead of using the
proxy server for routing requests, we propose to reuse it as a
metadata server instead.

In both these two designs, we propose high-performance
implementations of network communication and I/O modules
based on RDMA to provide the fastest possible object transfer.
We also explore different hashing algorithms in the community
to further improve the object verification performance in Swift.

Experimental evaluations with microbenchmarks, Swift
stack benchmark (ssbench) [13], and synthetic application
workloads reveal up to 2x and 7.3x performance improvement
with our two proposed designs for put and get operations. The
overall communication time is reduced by up to 4x, while the
I/O time is reduced by up to 2.3x.

To summarize, the main contributions of this paper are as
follows:

1) Identifying the performance bottlenecks inside default
Swift architecture and designs

2) Re-desiging the Swift architecture to improve scalability
and performance

3) Proposing RDMA-based communication framework for
accelerating networking performance

4) Proposing high-performance I/O framework to provide
maximum overlap between communication and I/O

5) Exploiting benefits from different hashing algorithms for
improving the object verification performance

6) Introducing new operation mode in Swift to take advan-
tage of our proposed designs

To the best of our knowledge, this is the first work to-
wards accelerating OpenStack Swift with RDMA over high-
performance interconnects in the literature.

The rest of this paper is organized as follows. Section II
discusses the background for our work and Section III presents
the motivation behind our work. Section IV presents our pro-
posed designs to accelerate Swift and Section V demonstrates
a performance evaluation of our proposed design. Section VI
discusses related work and Section VII concludes the work.

II. BACKGROUND

A. OpenStack Swift
Swift [14] is a distributed cloud-based object storage ser-

vice. It is one of the main components of the OpenStack [2]
software family. Usually, Swift is deployed as part of an Open-
Stack deployment. However, it may also be deployed as an
independent storage solution. Swift is not a filesystem-based
solution, but provides access to data using standard HTTP
calls. This is one of the biggest advantages of Swift, because
it allows data to be accessed from anywhere in the world, as
long as there is an Internet connection available. Swift stores
files in the form of objects inside containers. Containers in
Swift are the equivalent of folders in a filesystem. For object
verification while uploading and downloading, Swift computes
the hashsum of each object.
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Figure 1. Swift Architecture

The Swift architecture consists of the following compo-
nents:

1) Proxy Server: The proxy server ties the entire swift
architecture together. It handles all requests made to
Swift and routes it to the appropriate server.

2) Account Server: Server that maintains account informa-
tion and handles account related requests

3) Container Server: Server that handles information and
requests related to containers

4) Object Server: The object server is a blob storage server
that handles upload, download, and deletion of objects.



Each object is stored as a binary file with metadata
stored as the file’s extended attributes. It employs various
auditing procedures to recover from and avoid certain
error conditions.

5) The Ring: It provides a mapping between the names of
entities and their locations. There are seperate rings for
containers, accounts, and objects.

Each storage node is typically deployed with one instance
of account, container, and object server.

B. Python/ctypes

Python [15] is a general purpose high-level programming
language. Python is an object-oriented and dynamically in-
terpreted language. Owing to its minimal syntax design and
programmability, it allows programmers to express concepts
in relatively fewer lines of code compared to other common
languages. This has made it really popular as a programming
language in recent times. However, because it is high-level
and dynamic in nature, it suffers in performance.

Ctypes [16] is a library in the Python programming language
that provides with C compatible datatypes along with the
ability to call shared libraries and DLLs directly from Python
code. For any C function call, ctypes automatically maps the
Python datatypes to C datatypes. Using this library, C-based
DLLs and shared libraries can be wrapped in pure Python.

C. InfiniBand

InfiniBand [6] is a computer-networking communication
standard used in high-performance computing to achieve high
throughput and low latency. This high speed, general purpose
I/O interconnect is widely used in supercomputers world-
wide. According to the latest TOP500 [8] rankings released
in November 2016, more than 37% of the top 500 supercom-
puters use InfiniBand as their networking interconnect. One
of the key features of InfiniBand is Remote Direct Memory
Access (RDMA). RDMA can be used by a process to remotely
read or update memory contents of another remote process
without any involvement at the remote side. InfiniBand offers
data transfer in a complete OS bypassed manner, i.e the
communication is processed in userspace and carried out in
a zero-copy manner. InfiniBand uses hardware offload for
all protocol processing, resulting in high-performance com-
munication. InfiniBand also features Internet Protocol over
InfiniBand (IPoIB) protocol that can be used to run traditional
socket-based applications over InfiniBand hardware.

III. MOTIVATION

Swift is typically used by users for uploading/downloading
software, simulation input files, experimental results, large
datasets, VM images, and configuration files. Based on where
the cluster is accessed from, its usage can be classified into
two scenarios, as shown in Figure 2. The two scenarios are
highlighted in red (dashed) and green (solid). The first scenario
consists of a user accessing the cluster from outside of the local
cluster network via the Internet. The second usage scenario
consists of the user accessing the cluster from within the local

network. This is usually from a bare-metal OpenStack compute
node or a virtual machine running on one of the compute
nodes. The second scenario is more likely to happen since
most users use Swift for storing and retreiving files for running
experiments on the compute nodes. From the figure it is clear
that the proxy server is a bottleneck for all requests and limits
the throughput of the cluster.

Public Switch

Proxy Server

Object Servers

Internet

OpenStack Compute 
Nodes1

2

Public Switch

Proxy Server

Object Servers

Internet

OpenStack Compute 
Nodes1

2

Metadata Request

GET/PUT 
Request

GET/PUT Request

GET/PUT 
Request

GET/PUT 
Request

Figure 2. Swift Usage Scenarios

Apart from uploading and downloading objects, other Swift
requests involve manipulating containers, accounts, and ob-
jects. All of these operations do not incur any significant
network communication or I/O since they do not involve any
object transfer. Our evaluations reveal sub-second latency for
such operations. However, uploading and downloading objects
incurs significant network and I/O overhead, especially for
large objects. The Swift code is written in Python with net-
work communication implemented using TCP sockets-based
communication. As we already know, Python performance is
lower than other common languages. In addition, TCP com-
munication has serveral known performance bottlenecks, such
as context-switch and extra buffer copies for each message
communication. Thus, it is important to analyze the perfor-
mance of upload and download operations with the default
Swift implementation and come up with ideas to improve the
performance of these operations.
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Figure 3. Breaking down GET and PUT latency into different components

Figure 3 shows the breakup of get and put operations into
different components for a 5 GB object. The surprising result
here is that computing the hashsum of the object takes a good
chunk of time. This is a result of the slow performance of
the md5 hashing algorithm which is used by default in Swift.



For put, 41.1%, 28.1%, and 28.5% of the total time is spent
in hashsum computation, network communication, and I/O,
while for get this breakup is 49%, 33.5%, and 14.6%. It is
evident that computing hashsum, network communication, and
I/O take up a big chunk of the total operation count. Thus, it
is only natural to ask whether the performance of these three
main components can be enhanced in some manner to improve
the overall performance of the cluster.

The benefits of high-performance networking interconnects
such as InfiniBand have been extracted by the HPC community
for a long time. They provide advanced features such as
RDMA-based communication, which provides for low latency
and high-bandwidth communication. As we have already seen,
network communication and I/O constitute a big portion
of get and put operations. This provides an opportunity to
use RDMA-based semantics to accelerate get and put Swift
operations. The challenge here is to design a scalable com-
munication framework based on RDMA which can not only
speed up the network communication but also provide overlap
with I/O. Our primary motivation in this paper is to reduce
the communication, I/O, and hashsum components of get and
put operations while improving the scalability and throughput
of the Swift cluster, and maintaining the same level of fault-
tolerance.

IV. PROPOSED DESIGNS

In this paper, we propose a high-performance implementa-
tion of the OpenStack Swift Object Storage, called Swift-X.
We propose designs to accelerate the network, I/O, and object
verification (hashsum) components of get and put operations.
We present our proposed designs in this section.
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Figure 4. Technology Overview

A. Swift-X Overview

Figure 4 presents an overview of our proposed design. We
propose extensions and modifications to the command-line
Swift client library, object server, and proxy server. Figure 5
shows the architecture overview of our design. We introduce
an RDMA-based communication module in the client, object
server and proxy server for low latency communication. We
also introduce a dedicated I/O module in the client and object
server for object file related operations. The communication
and I/O modules have been designed to work in an integrated
manner and are written in C for performance. It is important

to mention here that we do not change the default Swift client
API. Thus, existing applications can transparently run over
Swift-X without any code modification. Since the Swift code
is written in Python, we cannot directly call our C modules
from Python. To solve this issue, we use the ctypes Python
library which allows shared C libraries to be loaded and
called from Python code. Thus, we compiled our C modules
as shared libraries and used ctypes to integrate the proposed
modules with Swift code. The default implementation uses the
httplib Python library [17] for HTTP-based communication.
This communication can either go through the Ethernet adapter
using standard TCP or through the InfiniBand adapter using
the IPoIB protocol. Our implementation uses the ctypes Python
library to make calls to our communication module which is
built on top of the InfiniBand verbs interface allowing for
native communication over InfiniBand adapters.

B. Client-Oblivious Design

As explained in Section III, Swift typically has two usage
scenarios - one where the cluster is accessed from within
the local network, and the other where it is accessed from
an external network. Access from external networks is typ-
ically through the user’s personal computer which unlike
datacenter and cluster servers typically do not have RDMA-
capable network devices. For this usage scenario, we propose
a client-oblivious design where users can still benefit from our
proposed designs without the need for any modification in the
client library or need for RDMA-capable network devices on
the client node. Figure 6(a) shows how this design works. The
overall communication semantics of get and put operations are
preserved with no changes to the communication between the
client and proxy server. However, communication between the
proxy and object servers is via RDMA using our proposed
design changes to the proxy and object servers. This design
works as follows. The client sends requests and data to the
proxy server over TCP using the default client implementation.
The proxy server sends requests and data to object servers
in parallel using RDMA communication. It then waits for
responses from the object servers, before returning the final
response to the client. For this design, we inherit the repli-
cation semantics and design from the default implementation
and provide the same fault-tolerance level.

C. Metadata Server-based Design

The default Swift design routes all requests and data through
the proxy server adding additional latency to each operation.
Swift provides fault-tolerance by replicating objects to multi-
ple servers. The proxy server is responsible for handling repli-
cation in the default implementation. While multiple proxy
servers can be deployed, the number of proxy servers usually
ranges from 1-4. Thus, the proxy server becomes a bottleneck
for multiple get and put operations. For the second usage
scenario, where the Swift cluster is accessed from within the
local network, the object servers are directly accessible from
the client nodes. Thus, there is no need to route all requests
through the proxy server. For this scenario, we propose a
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Figure 6. Proposed Designs for Swift-X Operations

metadata server-based design which completely overhauls the
existing design of put and get operations in Swift. Instead
of using the proxy server for routing requests, we propose
to reuse it as a metadata server instead. The clients will use
the proxy server to obtain object metadata for get and put
operations. This design will work as follows. The client will
send a get or put request to the proxy server using the RDMA
communication module. The proxy server will then get the
required metadata for the object including the locations of

object servers where the object needs to be sent to or gotten
from. The client then parallely sends the request and data to all
object servers. Thus, replication is done in a parallel manner
using RDMA. We make sure that the semantics of replication
is exactly the same as the default design and there is no change
in the fault-tolerance of the cluster. For get operations, we get
the object from the first object server which indicates that it has
an uncorrupted copy of the object. By eliminating the need to
route data through the proxy server and handling replication in
the client itself, this design offers siginificant scalability over
the original design. Figure 6(b) shows how this design works.

D. Object Verification

For object verification while uploading and downloading
objects, Swift computes the md5 hashsum of each object.
While md5 is a popular hashing algorithm and provides high
quality hashing, it suffers from poor performance. As our
evaluations in Section III show, 41% of the total time for put
and 49% of the total time for get is spent in computing the
md5 hashsum of an object. Thus, this calls for a re-evaulation
of the decision to use md5 for object verification.

Name Speed Quality
xxHash [18] 5.4 GB/s 10

MurmurHash 3a [19] 2.7 GB/s 10
SBox [20] 1.4 GB/s 9

Lookup3 [21] 1.2 GB/s 9
CityHash64 [22] 1.05 GB/s 10

FNV [23] 0.55 GB/s 5
CRC32 0.43 GB/s 9
MD5-32 0.33 GB/s 10
SHA1-32 0.28 GB/s 10

Table I
HASHING ALGORITHMS

After a thorough survey of state-of-the-art hashing algo-
rithms, we found one which delivers the best performance
while providing high hashing quality - xxHash. The SMHasher
test [24] is a good benchmark to measure the quality of hashing
algorithms. Xxhash scores a perfect 10 on this benchmark



while delivering the best performance as shown in Table I.
Thus, in our designs, we modify the existing verification
schemes to use xxHash instead of md5.

E. Design Implementation

In this subsection, we present the different components of
our proposed design.

1) Proxy Server: As shown in Figure 5, we introduce
dedicated communication and I/O modules in the proxy server.
We add a RDMAMetadataController class which provides
with request handlers and an RDMA connection manager
for handling RDMA object requests. The RDMA connection
manager builds connections on demand and caches connec-
tions for performance. For metadata requests, the proxy server
uses the object and container rings to get host information
about the request object and returns this information to the
client. For the client-oblivious design, we made changes to the
ObjectController class in the proxy server to use our RDMA
communication module for communication with the object
servers.

2) Object Server: Each object server has a RDMAObject-
Controller class which provides with request handlers and a
connection manager for handling object get and put requests.
This connection manager is similar to the connection manager
proposed in the proxy server. Each request handler has a
dedicated request queue. All requests received by the object
server are placed in the request queue of a handler selected in
a round-robin manner. The request handlers poll the queues for
requests and then process them. File operations are processed
using the dedicated file handler which uses the I/O module
underneath.

3) Client: Our client implementation is based on the Python
command-line Swift client. This version of the Swift client
is the most popular among users. Our client implementation
uses the communication module also used by the object and
proxy servers. For sending requests to the proxy and object
servers, we use a dedicated fixed size thread pool. This allows
us to reuse the spawned threads and send requests to servers
in parallel.

4) Object Transfer: Our proposed I/O and communication
modules work in an integrated manner to transfer objects to
the object server. The semantics of the object transfer are
as follows. The object contents are read and transfered in a
chunked manner. We read the object contents chunk by chunk
directly into the pre-allocated RDMA communication buffers.
This prevents the need for any extra buffer copies for each
network transfer. We then send each chunk using RDMA and
wait for acknowledgement from the receiver. While waiting for
the acknowledgement, we read the next chunk of data from the
object to overlap communication with I/O as much as possible.
On the receiver side, upon receipt of a object data chunk,
we directly write the data from the RDMA communication
buffer to the object file, again ensuring maximum overlap
between communication and I/O. By using acknowledgements
and object hashsum, our design ensures lossless transfer of
object data while delivering high-performance.

F. Usage Modes

Based on our two proposed designs, we propose two usage
modes for Swift-X, as shown in Figure 7. The first mode
(highlighted in red dashed) is for use from external networks
over the Internet. This mode is the same as default Swift
design, except that the communication between the proxy
server and object servers is using our modified RDMA-
based designs and modules. The second mode (highlighted
in green solid) is for use from within the OpenStack cluster
network. In this mode, our metadata server-based design is
utilized to allow direct communication between the client and
object servers. This mode uses our modified client designs
while the first mode uses the default client design. Swift-
X can operate in both modes simultaneously. Based on the
client implementation, the appropriate mode is automatically
selected and then used.
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Figure 7. Swift-X Usage Scenarios

V. PERFORMANCE EVALUATION

A. Experimental Testbed

Our testbed consists of 18 physical nodes on the Chameleon
Cloud [25], which is an OpenStack deployment. Each compute
node has a 24-core 2.3 GHz Intel Xeon E5-2670 (Haswell)
processor with 128 GB main memory and is equipped
with Mellanox ConnectX-3 FDR (56 Gbps) HCAs and PCI
Gen3 interfaces. We use CentOS Linux 7.1.1503 (Core)
with kernel 3.10.0-229.el7.x86 64. In addition, we use the
Mellanox OpenFabrics Enterprise Distribution (OFED) [26]
MLNX OFED LINUX-3.0-1.0.1, Python 2.7.5, Swift 2.8.0,
and Python Swiftclient 3.0.0.

We deployed a Swift cluster with 16 object servers and
1 proxy server. Each object server also runs an account and
container server. We use the standard replication policy for
each object with a replication factor of 3.

Table II provides a description of the terms we have used
in all graphs as well as the remaining text. We use M1 to
signify the operation mode in our implementation where the
client-oblivious design is triggered, while M2 is used for the
mode where the metadata server-based design is triggered.

B. Microbenchmarks

We first evaluated our designs with basic put and get
microbenchmarks. We used our implementation of the Swift
client and measured the overall latency of each operation. The



Term Description
Swift Swift v2.8.0

Swift-X Proposed design implementation on Swift v2.8.0
M1 Client-oblivious design
M2 Metadata server-based design

Table II
GRAPH LEGEND

object size is varied from 1 MB to 5 GB and each object is
uploaded using a seperate put or get operation. Each object
is a binary file that contains randomly generated data. We go
up to 5 GB because that is the maximum size of an object
that Swift can support. Uploading objects larger than 5 GB
is handled by splitting the object into multiple chunks of size
5 GB or less and uploading them as seperate objects. This
is automatically done by the client code and is supported in
our implementation as well. Downloading of large objects is
handled similarly by the client. Figures 8(a) and 8(b) show the
latency of get and put operations. Overall, we see up to 40%
and 47% improvement with M1 for put and get operations,
respectively. With M2 this improvement is 55% and 66%,
respectively. It can also be observed that the latency for objects
of sizes 64 MB or less is similar for all three implementations.
This is because operations on small object sizes do not
involve significant network or I/O. We also did a time breakup
comparison to understand where the performance benefits are
coming from. This analysis is shown in Figure 8(c). It can be
observed that the hashsum time is reduced by a huge margin
(15x). This is due to the fast performance of the xxHash
algorithm. In addition, both communication and I/O times are
reduced for both designs in Swift-X. These improvements can
be attributed to RDMA-based communication, efficient I/O
implementation, and overlap between I/O and communication.
The performance of design M2 is much better than that of
design M1. This is expected as the TCP communication in
M1 between the client and proxy server limits the overall
performance of the operation. This design also suffers from the
need to route all requests and data through the proxy server.
With these limitations solved in M2, we observe much more
improvement as compared to M1, demonstrating scalability
improvement in the cluster. Overall, the communication time
is reduced by 36% and 3.8x for put and 36% and 2.8x for get
with M1 and M2, respectively. While the overall I/O time
is reduced by 16.3% and 2.3x for put with M1 and M2,
respectively. We do not see any significant improvement in
I/O for get operations. This is because the I/O read code-path
is quite similar for all cases, while the default write code-
path involves additional memcopies which our design avoids
by directly writing to the object file from the communication
buffers.

C. Evaluation with ssbench

Swift Stack Benchmark or ssbench [13] is a flexible and
scalable benchmark for evaluating Swift performance. Ssbench
allows for testing the Swift cluster under different scenarios.
Each scenario is defined by a configuration file which includes

Number of Objects
Scenario Small

(10 MB)
Medium
(100
MB)

Large (1
GB)

Huge (5
GB)

CRUD Profile

Scenario1 114 57 29 0 [4 4 2 0]
Scenario2 0 23 13 4 [4 5 1 0]

Table III
SSBENCH SCENARIOS

information such as the number and size of objects to test
with, the ratio of create, read, update, and delete operations
(also known as CRUD profile), total operation count, etc.
Create and update involve a put operation, the only difference
being that for update, the object already exists in the cluster.
Read involves a simple get operation. Ssbench also supports
distributed multi-client evaluation. Its architecture consists of
one master process and several worker processes. The worker
processes actually execute the operations, while the master
process co-ordinates all worker processes. Ssbench does not
directly use the Python Swift client API, but uses a modified
version of it. Thus, for evaluating Swift-X with ssbench,
we brought our client side changes to ssbench as well. Our
modifications are based on ssbench 0.3.9, and we use our
modified ssbench implementation for all experiments. After
looking at Swift usage reports, we came up with two scenarios
to evaluate our cluster (Table III). Since we did not modify the
delete operation code-path, we do not evaluate the performance
of delete operations. For all evaluations we test with 8 client
workers, each with a concurrency of 1.

Figure 9 shows the number of requests per second for the
complete benchmark run for both scenarios. Figure 10 shows
latency figures for Scenario 1 while Figure 11 shows figures
for Scenario 2. We observe 77.4% and 2.8x improvement
in the total operations per second for Scenario 1 and 2x
and 3.5x improvement for Scenario 2 with M1 and M2,
repectively. For overall latency figures, we see 2.1x and 2.68x
improvement for create over Swift, 2x and 6.25x improvement
for read, and 27% and 23% for update with M1 and M2,
respectively. For Scenario 2, the improvement is 2x and 2.6x
for create, 21% and 7.3x for read, and 42.4% and 2.72 for
update. Overall M2 performs much better than M1, however
for small object sizes we observe that M1 performs slightly
better than M2. This is because for small object sizes, the
connection initialization and metadata request overhead cannot
be compensated by improvements in the small amount of
network and I/O involved. It can also be observed that there is
much more improvement with ssbench for M2 than what we
saw with our microbenchmarks. This can be attributed to our
metadata server-based design because of which the 8 clients
running in parallel can process more requests per second since
the proxy server is no longer the bottleneck.

D. Synthetic Application Benchmark

Swift is often used for storing input files for Big Data
applications to be run in a cloud environment. According to the
official OpenStack user survey [3], 58% of Swift deployments
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Figure 9. Evaluation of total requests per second with ssbench
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Figure 10. Latency of different operations for ssbench scenario 1
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Figure 11. Latency of different operations for ssbench scenario 2
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Figure 12. Application evaluation with e-book dataset

store user application data while 32% of deployments store
Big Data. Thus, it is important to analyze the performance
of storing and retreiving this data from the cluster. Usually,
input files are uploaded to Swift from the user’s personal
computer or from a server on a cluster. These files are then
downloaded from the virtual cloud cluster and the experiment
is run there. Apache Hadoop [27] is a popular Big Data stack
based on the MapReduce [28] framework. To evaluate our
designs with this use case, we designed a synthetic application
benchmark which uses an e-book dataset [29], which can be
used as input for the Hadoop WordCount application. The
benchmark uploads and downloads the input dataset from one
of the compute nodes in the OpenStack cluster. We create three
datasets of sizes 20, 30, and 40 GB, each consisting of multiple
large e-books in text format. We evaluated both uploading
and downloading the input dataset with our proposed designs.
Results for this evaluation are presented in Figure 12. We
see up to 27% and 4.5x improvement for uploading and
41% and 5x improvement for downloading with M1 and M2,
respectively. This demonstrates the feasibility and application
of our design in real-life scenarios.

VI. RELATED WORK

There have been several publications which propose modifi-
cations to Swift or present use cases and case studies of Swift
usage. In this section, we discuss the ones most related to our
work.

Yokoyama et al. [30] propose an intercloud object storage
service called Colony. Their design allows object storage
services on different clouds to access each others data using
the same client API. They implement their design on top of
Swift. They stress on inter-organization research collaboration
as the motivation behind their work. Authors in [31] present
an approach to allow for content level access control in Swift.
While the default Swift implementation uses an all or nothing
approach, their implementation allows specifying which user
can access which part of an object. In [32], authors present
a middleware package built on top of Swift, called ZeroVM.
Their middleware allows users to run containerized applica-
tions directly on the object servers. Their main goal is to bring
computation to data rather than the other way around. Another
work [33] proposes a client-based deduplication scheme for
securely storing data in Swift. Their system generates a key

for each data object and ensures that only the user with
the correct private key can decrypt object data. In [34],
authors propose a network-aware inter-cloud object storage
service based on Swift. Their approach uses topology-aware
operations and asynchronous-replication to improve network
communication time. However, their design suffers from the
TCP communication bottleneck and reduced fault-tolerance.

Poat et al. [35] provide a performance comparison of Swift
and Ceph with real-life scenarios. Their results indicate that
Swift performs better for single file writes, but falls short of
Ceph for I/O concurrency and multi-client tests. Another case
study [36] by CERN [37] presents results for using Swift for
handling data from CERN experiments. Their results indicate
that Swift could fulfill requirements by the CERN scientific
community. Authors in [38] propose a smart cloud seeding sys-
tem for BitTorrent [39] which uses Swift for data storage and
reliability. They modify Swift to support the BitTorrent proto-
col. The Swift proxy server handles all incoming requests and
upon detecting a certain mass for specific content, switches to
the BitTorrent protocol. Community clouds are usually more
distributed, diverse and less reliable than data center clouds.
In [40], the authors evaluate the performance and sensitivity
of Swift in a typical community cloud setup. Through their
evaluation results, they establish a relationship between the
performance of Swift and the various environmental factors in
a community cloud.

There has also been a lot of work on using RDMA to
accelerate Big Data stacks. Authors in [11] use RDMA to
improve the performance of Spark, while in [9], the authors
present an RDMA-enhanced HDFS design. Shankar et al. [12]
propose to accelerate Memcached using RDMA. They also
present non-blocking extensions and designs with SSD for
Memcached.

Although there has been a lot of research on modifying
Swift to introduce new functionality, most of the works do not
focus on performance. There has also been a lot of research
on using RDMA to improve the performance of Big Data
middleware, however no such work has been done for Swift.
Moreover, most papers focus on improving the performance of
Big Data stacks, while such a direction for cloud computing
middleware is relatively unexplored. This makes our work
unique and our contributions significant.



VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a high-performance design and
implementation of OpenStack Swift, called Swift-X, for build-
ing efficient HPC clouds. We first analyzed the Swift archi-
tecture and its common usage scenarios and identified major
bottlenecks. We also conducted a comprehensive performance
evaluation of get and put operations and identified the compo-
nents contributing the most to the overall latency of the opera-
tion. We identified hashsum computation, communication, and
I/O as the main factors affecting performance. Based on our
analysis, we proposed two designs, namely the client-oblivious
design and the metadata server-based design, for accelerating
Swift performance for the two common use cases. We also
proposed designs to accelerate network communication, I/O,
and object verification components of put and get operations.
We introduced new operation modes in Swift to take advantage
of our proposed designs. We presented a comprehensive evalu-
ation of our proposed design with microbenchmarks, ssbench,
and synthetic application benchmarks. Our evaluation reveals
that our designs can deliver up to 2x performance improvement
for the client-oblivious design and up to 7.3x improvement for
the metadata server-based design.

In the future, we plan to modify the S3 and HDFS Swift
clients to work with our designs. We also plan to evaluate with
additional benchmarks and application scenarios. Evaluation
with multiple proxy servers, SSDs, and other deployment
scenarios is also left as future work.
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