
2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 173

Characterizing and Accelerating Indexing
Techniques on Distributed Ordered Tables

Shashank Gugnani∗, Xiaoyi Lu∗, Houliang Qi†‡, Li Zha†‡, and Dhabaleswar K. (DK) Panda∗
∗ Department of Computer Science and Engineering, The Ohio State University

Email: {gugnani.2, lu.932, panda.2}@osu.edu
† Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Email: qihouliang@software.ict.ac.cn, char@ict.ac.cn
‡ University of the Chinese Academy of Sciences, Beijing, China

Abstract—In recent years, most Web 2.0/3.0 applications have
been built on top of distributed systems which allow data to be
modeled as Distributed Ordered Tables (DOTs) such as Apache
HBase. To analyze the stored data, SQL-like range queries over
a DOT are fundamental requirements. However, range queries
over existing DOT implementations are highly inefficient. Several
secondary index techniques have been proposed to alleviate this
issue, but they introduce additional overhead while creating and
updating the index. Moreover, index techniques introduce several
additional challenges for DOTs, particularly, network communi-
cation and thread models for concurrent request processing. In
this paper, we first characterize the performance of index tech-
niques on DOTs from a networking perspective. We then propose
an RDMA-based high-performance communication framework
which uses HBase as the underlying DOT implementation to
accelerate these techniques. We propose several thread models
for our RDMA-based design and compare their performance.
We design a parallel insert operation to reduce index creation
overhead. We also design several benchmarks to evaluate DOT-
based systems. Experimental evaluations with state-of-the-art
index techniques (CCIndex and Apache Phoenix) show that our
design can reduce the insert overhead for secondary indices
to just 23%. Evaluation with TPC-H queries demonstrates an
increase in query throughput by up to 2x, while application
evaluation with real-world workloads and data (100M records)
provided by AdMaster Inc. show up to 35% reduction in
execution time.

Keywords-DOT, RDMA, HBase, Indexing, CCIndex, Phoenix
I. INTRODUCTION

Data is being generated at an exponential rate. The problem

of storing this ever growing data is a challenge which has

motivated researchers to come up with solutions such as

Google’s Bigtable [12], Yahoo’s PNUTS [14], and Apache

HBase [2]. These systems can be thought of as distributed

NoSQL [24] databases because of similarities in many design

and implementation strategies. They allow data to be modeled

as a Distributed Ordered Table (DOT), which partitions the

table data using continuous keys into regions distributed on

several nodes and replicates each region for fault-tolerance.

Web 2.0/3.0 [23] and social-networking applications require

a flexible data store and are thus built on top of Bigtable

and HBase like systems [11]. The low latency requirement

of these applications imposes heavy data analysis (querying)

requirements on the underlying DOTs. SQL-like range queries

over DOTs is an important requirement to analyze data.

*This research is supported in part by National Science Foundation
grants #IIS-1447804, #ACI-1664137, #IIS-1636846, and #CNS-1513120 and
National Key Research and Development Program of China (Grant No.
2016YFB1000604, 2016YFB0201404).

However, existing schemes in Bigtable and HBase to evaluate

range queries are not efficient. This is because any query

requiring data filtering based on values of non-primary key

columns can only be resolved by going over all records

in the DOT. Numerous solutions [8], [30], [17], [25], [28],

[29], [3] have been proposed to solve this challenge by

building secondary indices on DOTs to allow fast querying.

CCIndex [30] is a state-of-the-art index technique that provides

high-performance querying of DOT data. Apache Phoenix [3],

a library built on HBase, provides several such index tech-

niques. Although these solutions work extremely well for

querying data, they introduce additional overhead in the form

of secondary index creation. Each insert operation requires the

secondary index tables to be updated as well. Moreover, the

network performance characteristics of index techniques on

DOTs have not been evaluated in a systematic manner.

Existing DOT systems and their implementations are based

on Java TCP [18] sockets communication. The requirement for

TCP sockets communication to support several legacy features

has crippled its performance and development. The primary

problem with TCP sockets is the need to copy data from

user buffers into kernel buffers and context-switch to send

each message [10], [19]. This drastically increases the net-

work latency and decreases application performance. Modern

networking interconnects such as InfiniBand [6] and RoCE [9]

offer high-performance and low latency communication pro-

tocols using Remote Direct Memory Access (RDMA) which

have been widely used by the HPC community. However,

the use of RDMA to accelerate index techniques has been

relatively unexplored.

Focus [20] This paper
RDMA design

√ √
Supported Index
Techniques

× CCIndex, Apache Phoenix

Operations Get, Put Get, Put, Scan
Thread Models Functional

partitioning
Functional partitioning,
thread-per-request,
bounded thread pool

Benchmarks YCSB YCSB, TPC-H
Applications × AdMaster Inc.
Data Set Synthetic data Synthetic and real data

Table I
COMPARISON WITH EARLIER WORK

Web services and applications are becoming more complex

and their demand is steadily increasing. This requires the

design of new systems that can handle this ever-increasing

174

load and provide a robust and responsive service platform.

Much of the previous work [27], [22] highlights the need for

a highly decoupled and functionally partitioned (FP) model.

Such models are believed to ensure fair response times to

clients while ensuring high request processing throughput.

These models are designed using processes and threads as the

models for concurrent programming. Different functional ac-

tivities are assigned to different pools of threads, thus utilizing

the plethora of cores available in modern processors. However,

such designs overlook the overhead of thread synchronization

and data transfer between cores, particularly when each request

takes only a brief amount of time to be processed. This is

particularly true when using RDMA-based communication,

where the advanced networking hardware provides extremely

low latency communication and offload capabilities. This leads

us to the following broad challenges:

• What are the performance characteristics of index tech-

niques on DOTs from a networking perspective?
• How can a high-performance RDMA-based communi-

cation framework for index techniques on DOTs be

designed to reduce network communication time?
• What is the impact of different thread models for highly

concurrent DOT workloads?
• Can an RDMA-based design improve the performance of

applications built on DOTs?

In this paper, we propose an RDMA-based communica-

tion framework for index techniques on Apache HBase to

take advantage of modern networking interconnects to reduce

network latency and improve performance. While a previous

RDMA-based design [20] exists, they don’t focus on index

techniques. Indexing techniques bring with them a deluge of

challenges, which we focus on solving in this paper. Table I

presents a comparison of this paper with the earlier work.

Our work proposes various thread models for achieving high

request concurrency. We also propose design changes to record

inserting implementations to reduce the additional overhead

incurred for each insert operation. To analyze the performance

of DOT-based queries on our proposed design, we design test

queries over TPC-H [16] data and application data provided

by AdMaster Inc. To summarize, the main contributions of

this paper are as follows:

• Performance characterization of the networking require-

ments of index techniques on DOTs
• RDMA-based communication framework built on HBase

to accelerate index techniques
• Thread models for highly concurrent request processing
• Query benchmarks to evaluate the performance of index

techniques on DOTs
• Performance evaluation with CCIndex and Phoenix with

TPC-H and AdMaster Inc. application workloads

Our experimental evaluations show that our design can

reduce the insert overhead for secondary indices in CCIndex to

just 23%. Evaluation with TPC-H queries shows an increase

in query throughput for CCIndex and Phoenix by up to 2x

while evaluation with application workloads presents up to

35% reduction in execution time.

The rest of this paper is organized as follows. Section II

discusses the background for our work and Section III presents

a comprehensive performance characterization of index tech-

niques on HBase. Section IV presents our proposed design

to accelerate index techniques on HBase, Section V dis-

cusses the querying benchmarks we propose, and Section VI

demonstrates a performance evaluation of our proposed design.

Section VII discusses related work and Section VIII concludes

the paper.
II. BACKGROUND

A. Existing Design of RDMA-HBase
Apache HBase [2] is an open-source distributed NoSQL

database modeled after Google’s BigTable [12]. RDMA-

HBase [20] is a library built on Apache HBase that can be

used on RDMA-enabled clusters to exploit the benefits of

RDMA. RDMA-HBase implements high-performance designs

for data transfer with get and put operations in HBase. Their

implementation is based on the popular functional partitioning

model (also adopted by Apache HBase), where separate thread

pools are used for compute, network, and I/O components

of each operation. While their implementation is able to

extract optimal performance from RDMA-enabled hardware,

they don’t consider running index techniques over HBase

where several additional challenges need to be addressed. Most

importantly, they don’t provide a high-performance design

of the scan operation, which is the primary requirement

when querying data from the tables. Moreover, functional

partitioning is assumed to be the best thread model for their

implementation, but no evaluations are presented to support

this claim. There is no discussion on how to allocate threads

for different functional thread pools in their design. Evaluation

with real-world applications is also missing in their work. We

aim to solve these challenges in this paper.

B. Index Techniques
CCIndex [30] is a complemental clustering index on Dis-

tributed Ordered Tables for accelerating multi-dimensional

range queries built on Apache HBase. CCIndex builds comple-

mental clustering index tables (CCITs) for each index column.

The index tables are regular HBase tables and are split into

regions and stored on RegionServers. Each CCIT contains data

for all columns. Thus, range queries can be evaluated using a

simple scan operation and involve no random reads. CCIndex

uses the region-to-server mapping information provided by

HBase meta-tables to estimate the result size of queries and

optimize the query plan.

Apache Phoenix [3] is an open-source library built on

top of Apache HBase. Phoenix enables Online Transaction

Processing (OLTP) on HBase by providing APIs for SQL

queries and ACID transaction guarantees. Phoenix compiles

SQL queries to HBase scan operations so that they can be

directly run over HBase. Moreover, Phoenix also provides

several index techniques on HBase DOTs to accelerate queries,

namely global covered index, global uncovered index, and

local index. Global covered and uncovered indices are sim-

ilar to CCIndex. However, global uncovered index does not

have the complete column data in each index table, whereas

175

global covered index contains column data in each index

for columns specified during index creation. Local index co-

locates index and original table data by keeping index data

in shadow column families in the same table to minimize

network communication required for index scan. However,

it incurs additional overhead for locating index data while

scanning the index, since the location of index data cannot

be pre-determined.

Index related operations, such as scan, are performance

critical operations. Thus, a performance characterization of

these operations is needed first.

III. PERFORMANCE CHARACTERIZATION OF INDEX

TECHNIQUES ON HBASE

There are several index techniques that have been proposed

over HBase. CCIndex is a state-of-the-art index technique

that delivers high-throughput and low latency querying on

DOTs. As discussed in [17], CCIndex has the best querying

performance among several index techniques. Apache Phoenix

provides the ability to run SQL queries on HBase directly.

Adoption by several enterprise communities has made Phoenix

prominent in the context of operational analytics. Based on

these observations, we do all evaluations with CCIndex and

Phoenix and implement our designs on top of these techniques.

To understand the characteristics of different operations

on DOTs, we divide the usage of DOTs into three stages,

namely loading data, updating existing data, and querying

data. Loading data can be classified as either on-line or off-

line loading depending on whether the data already exists

while creating the DOT. Most DOT implementations provide

a tool for (off-line) bulkloading of existing data into the

table. The tool leverages MapReduce to parallely transform

the existing data into DOT format and directly copies it into

internal DOT files, bypassing the insert code path. On-line

inserting and updating of data can be done using the insert

and update operations provided by the DOT. DOT supports

range queries over primary key and Multi-Dimensional Range

Queries (MDRQs). We study the requirements of each of these

operations for index techniques on DOTs and how RDMA can

be used to benefit each operation.

Bulkloading. (Fig 1(a)) Bulkloading is implemented using

the MapReduce framework and HDFS as the underlying

filesystem. A MapReduce job is run on the uploaded data to

partition data into regions and transform it into HBase format

which are directly loaded into each RegionServer. From related

works in the field [26], [21], we know that data shuffling in

MapReduce and writing files in HDFS are network intensive

operations. Thus, the bulkload operation can be considered to

be network intensive.

Insert. (Fig 1(b)) Insert is implemented using put operations

in HBase. For insert, multiple put operations are involved

since all index tables along with the original table have

to be updated. The first put operation inserts the record in

the appropriate RegionServer for the original table. It is the

responsibility of this RegionServer to insert the record into the

index tables. This is done with the help of a co-processor in

the server side which is invoked after each put operation.

Update. (Fig 1(c)) For update, get, delete, and put HBase

operations are required. Get operation is required here to check

if any index value has been updated. In case an index value

has changed, a delete and subsequent put operation is required

to update the index table.

OR-based Range Query. (Fig 1(d)) To evaluate OR-based

queries, for each range column the corresponding index table

needs to be scanned. After that the results need to be aggre-

gated and returned to the user. Scanning of index tables is

done in parallel.

AND-based Range Query. (Fig 1(e)) To evaluate AND-

based queries, only one index table is scanned with filters

on other columns. Selecting which index table to scan is

done by the query optimizer. CCIndex uses region-to-server

mapping information in HBase to estimate result size and

select the optimal index table to scan. Phoenix also provides

a query optimizer, however, its implementation is not well

documented.

As discussed above, the main operations of concern for a

DOT are bulkload, insert, update, and query. It is clear that the

performance of get, put, and scan HBase operations are critical

to the overall performance of the application. To understand

the performance characteristics and bottlenecks of primitive

HBase operations, we conduct a comprehensive profiling

analysis of these operations using the Yahoo Cloud Serving

Benchmark (YCSB) [15] with one client and 1 KB record

size. Fig. 2(a) shows the time breakup of these operations. It

is evident that network communication time takes up a big

chunk of each operation (27.38% for scan, 25.7% for put,

and 36.5% for get). Since scan is heavily used for querying,

we also analyze the time-line of the operation on both the

server and client sides (Figures 2(b) and 2(c)). The timeline

graphs reveal that there is no overlap between the compute

and network phases which limits the overall throughput of the

system.

Network transfer in HBase and Hadoop is through TCP

sockets. The main overhead in the TCP stack is because of

the need to copy data from userspace buffers to kernel buffers

and context switch to transfer each message. InfiniBand on

the other hand processes all communication in userspace and

in a ‘zero-copy’ manner. InfiniBand supports RDMA-based

semantics to allow one-sided data transfer. This provides an

opportunity to use RDMA-based semantics in InfiniBand to

accelerate various HBase operations required for DOT opera-

tions. As we have observed, HBase operations are network

intensive and have no overlap between the compute and

network phases. Thus, the challenge here is to design a high-

performance communication framework which provides good

overlap between computation and communication and can

improve the performance of applications built on DOTs.

IV. PERFORMANCE ACCELERATION OF INDEX

TECHNIQUES ON HBASE

In this paper, we propose designs to accelerate index tech-

niques on HBase using RDMA. In this section, we describe

the main components of our design and then illustrate our

176

(a) Bulkload (b) Insert (c) Update

(d) OR-based Range Query (e) AND-based Range Query

Figure 1. Overview of Bulkload, Insert, Update, OR-based Range Query, and AND-based Range Query

 0

 200

 400

 600

 800

 1000

Get Put Scan

T
im

e
(u

s)

HBase Operation

Server Processing
Cient Processing

I/O
Other

Communication

(a) Time Breakup of HBase Operations

R#3 decode

R#2 send response

R#2 processing

R#2 decode

R#1 send response

R#1 processing

R#1 decode

 0 100 200 300 400 500

Time (us)

Serialization
Communication

Computation

(b) Server Timeline for Scan Operation

send R#2

prepare R#2

process R#1 response

R#1 response
(from server)

R#1 processing
(server side)

send R#1

prepare R#1

 0 50 100 150 200 250 300

Time (us)

Serialization
Communication

Computation

(c) Client Timeline for Scan Operation

Figure 2. Breakup and Time-line of HBase Operations. Server and Client Processing represent time spent in serializing and de-serializing the message,
I/O represents time spent writing data to disk, and communication represents time taken to send the message over the network. R#n represents request number
n. It is assumed that the requests are sent one after another.

implementation. While our designs are based on HBase, they

can be extended and applied to any DOT system in general.

A. RDMA-enhanced HBase for Indexing Techniques
The main components of our proposed RDMA-enhanced

HBase are described below.
RDMA Connection Manager. We introduce a dedicated

RDMA connection manager on both the server and client side.

The connection manager runs in a separate thread and builds

connections with other nodes on demand. It also contains

a connection cache which stores the connection information

data structures in memory for fast communication. This also

ensures that we reuse existing connections to remote nodes

and don’t create excess or unnecessary connections, thereby

reducing network latency.

Figure 3. Querying using RDMA-based Scan
RDMA-enhanced Scan. As discussed in Section III, apart

from get and put operations, scan is a major requirement for

basic operations on DOTs. Thus, we design an RDMA version

of the scan operation to accelerate querying performance.

Fig. 3 shows our RDMA-based scan design to accelerate

queries. With scan operations, the result count varies based

on the requested range. Since the result count is not known

when a scan operation is issued, HBase divides the scan

response into multiple chunks. As soon as the processing

thread has scanned enough records, it packages the records

into one message and sends it to the communication thread.

The communication thread uses RDMA communication to

send all response messages to the client. Thus, for large result

count, multiple messages will be sent over the network and our

RDMA-based design should considerably improve the query

performance. We also use non-blocking semantics for network

communication on the server side. This is done by offloading

the actual message transfer protocol to the network adapter,

which allows for maximum overlap between computation

and communication, thereby increasing the effective querying

throughput. Note that although we have shown two separate

threads to perform communication and computation, they can

be performed by the same thread as well, depending on the

thread model (see Section IV-B).

Buffer Management. Since memory is often a limiting re-

source, we opt for off-JVM heap buffer allocation for all

internal RDMA communication buffers and data structures.

This is done by allocating memory for RDMA communication

directly in the JNI layer and making it available in the Java

177

RQ SQ

HCA

Dispatcher

Operation 1

Operation 2

Operation 3

Operation 4

(a) Threaded Server Design (TS)

RQ SQ

HCA

Handler

response

(b) Shared Threaded Server

Design (STS)

RQ SQ
HCA

Network
Handler

Processing
Handler

I/O
Handler

Response
Queue

Processing
Queue

I/O Queue

(c) Functional Partitioning-based Design (FP)

Figure 4. Thread Models for RDMA-based HBase Design

layer as a DirectByteBuffer. We use ByteBufferOutputStream

and ByteBufferInputStream to allow HBase to directly put the

communication data into the RDMA communication buffers

and preventing the need for additional buffer copies.

B. Thread Models
CCIndex and Apache Phoenix reduce the complexity and

computation required for each scan operation when querying

table data, resulting in short execution times for each scan

operation. While the traditional HBase design, as well as the

previous RDMA design were based on the popular functional

partitioning design approach [22], we argue that it might not be

the best approach for running querying workloads over HBase

with index techniques. Functional partitioning is considered

to be particularly useful for ensuring fair response times to

clients. This argument holds true when each request takes a

significant amount of time to be resolved but breaks down if

the request only takes a brief amount of time. In this scenario,

the overhead of thread synchronization and data transfer

between cores can lead to significant performance degradation.

This is particularly significant when using RDMA-enabled

high-performance interconnects, as the network communica-

tion latency is extremely low and can be offloaded to the

network adapter. This calls for redesigning the HBase server

architecture, particularly for scan operations.

To avoid any performance degradation and scaling to a large

number of clients, we believe that a single- threaded approach

(i.e. single thread to process entire request) is the best solution.

Using a single thread to process the complete request ensures

that we don’t run into any thread synchronization issues and

prevent the need for data transfer between cores. The thread-

per-request model and bounded thread pool models are two

of the most common single threaded designs. The thread-per-

request model is well known for its simplistic design and

application in web services [13]. The bounded thread pool

model is a variant of the thread-per-request model which

imposes a limit on the total number of threads. Our goal

here is to show that these models work well for CCIndex and

Phoenix over HBase. We implemented three designs based on

these single threaded models as well as the default functional

partitioning approach for scan operations. These designs are

presented in Fig. 4 and the integration of these designs in

HBase is presented in detail below.

Threaded Server Design (RDMA-HBase-TS). This design

is based on the thread-per-request model, utilized in several

web servers. In this design, each HBase operation consumes

a thread, with the OS responsible for switching between

threads to ensure fair response times for clients. While this

approach is relatively easy to program, it can lead to significant

performance degradation when the number of threads is large,

owing to the overheads associated with threading. In this

design, we have a dispatcher thread pool for reading operation

requests from the network adapter and launching a thread to

process the request in. Each operation thread is responsible

for processing the complete operation including posting the

network operation for sending the result to the InfiniBand Host

Channel Adapter (HCA).

Shared Threaded Server Design (RDMA-HBase-STS).
While the threaded server design suffers from the threading

overhead for a large number of threads, this design aims to

solve this issue by using a bounded thread pool for operation

processing. The entire design uses just one thread pool to

process the entire operation. Incoming requests wait in the

HCA’s queues until one of the handler threads pick them up

for processing. Limiting the number of concurrent threads

leads to a more scalable and robust design as compared to

the unconstrained threaded server design. It should be noted

that the number of threads can and should be tuned.

Functional Partitioning-based Design (RDMA-HBase-FP).
Functional partitioning typically involves partitioning the ap-

plication’s activities into a set of distinct functions which are

each processed by separate threads. The interaction between

functional units usually takes place through shared queues

and variables. In our case, network, computation, and I/O can

easily be identified as the main activities. Separate thread pools

are assigned for these three tasks with communication between

the thread pools using thread-safe queues. The default HBase

implementation and the previous RDMA implementation both

use a similar version of this design.

In all of these designs, we make use of the advanced

networking capabilities of InfiniBand adapters to offload com-

munication to the HCA. This is done by making use of the

hardware queues provided by the HCA - Send Queue (SQ)

178

and Receive Queue (RQ). We maintain the SQ and RQ in a

highly optimized manner to ensure optimum parallelism in the

network and enable full utilization of the bandwidth offered

by the InfiniBand hardware.

Finding the optimal number of threads to use for the STS

and FP designs is a challenge, particularly for FP. While solu-

tions like SEDA [27] propose dynamic resource provisioning

through resource controllers, and others advocate for static

allocation of resources, none of these solutions provides a way

to find the optimal number of threads for each functional unit

in FP. We claim that allocating threads to functional units in

the ratio of the execution time of each function delivers the

best performance. Through thorough evaluation, we realized

that this approach works extremely well when combined with

full subscription allocation (one thread per core) and delivers

the best performance.

C. Parallel Insert

Figure 5. Parallel Insert

As discussed in Section III, inserting records has consider-

able overhead for any index technique. This is because each

insert operation requires multiple put operations to update

the index tables. Our RDMA-enhanced communication engine

will help in reducing the latency of each put operation, thus

reducing the latency of the insert operation. However, as shown

in Fig. 1(b), CCIndex updates the index tables sequentially.

This is highly inefficient and has a significant impact on insert

latency. Moreover, for each insert operation, the RegionServer

creates a new connection with other RegionServers to update

necessary CCITs. The time taken for connection establishment

is significantly higher than the time taken for a put operation.

Based on these observations, we design a parallel version of

the insert operation as shown in Fig. 5. We add a cached

thread pool in each RegionServer which is initialized when

the server starts and only creates new threads when required.

For each put operation, we fetch a thread from the thread

pool and run the put operation in that thread after which the

thread is returned to the thread pool. We also introduce a

connection cache on each RegionServer to avoid the overhead

of connection establishment for each insert operation. Note

that this connection cache is different from the connection

cache proposed in the previous subsection as it is only meant

for caching connections between RegionServers.

D. Implementation
Fig. 6 shows the system architecture of our design. Since our

design is implemented on HBase, CCIndex, and Phoenix, we

expose their client-side APIs for use by applications. Depend-

ing on which underlying index and framework the application

requires, it has to use the appropriate client API. However,

since Phoenix has a built-in SQL engine, it can directly run the

application SQL queries without any modification. Underneath

the client APIs, we propose an RDMA-based communication

framework built on HBase. For building RDMA connections,

we add a dedicated connection manager. The client APIs

are mapped to the appropriate underlying RDMA-based RPC

calls. On the server side, there is a processing engine which

processes requests from the client. For processing index related

tasks, co-processors within the processing engine are utilized.

For communication with the client, the server also has an

RDMA-based communication engine along with a connection

manager. The overall design works as follows. The application

issues an operation using the client APIs. The client API

processes the request and converts it into a series of RPC calls.

These are then handed off to the RDMA-based communication

engine which communicates with the server RPC engine. The

server processes the call and sends a response via the RPC

engine back to the client where it is returned to the application.

Figure 6. System Architecture
The overall fault-tolerance of the proposed system is unaf-

fected. If we look at the semantics of DOT operations with

our proposed design, the network communication semantics

have clearly changed. However, it is easy to see that the

operational semantics of our design are exactly the same

as the original design. Our design changes only impact the

network communication code-path, the thread model, and

increase the overlap between computation and communication,

but preserve the overall order of execution. Any failure in the

network communication will be handled by the retransmission

logic in the upper layer. This scenario will be rare due to the

highly reliable communication offered by InfiniBand.

V. DESIGNING BENCHMARKS FOR DOT SYSTEMS

To test the performance of our design using DOT-based

queries, we design benchmark queries using the TPC-H

benchmark suite. TPC-H [16] is a popular benchmark for

evaluating the performance of databases. It is commonly

used by customers for evaluating and comparing the perfor-

mance of data warehousing solutions. We analyze the table

schema of the TPC-H orders table to come up with a set

of queries which can capture the characteristics of most

179

database application queries. We create four SQL queries

for the orders table provided with the TPC-H data. Query 1

is a typical multi-dimensional range query and Query 3 is

a typical one-dimensional query. Queries 2 and 4 are fine-

grained multi-dimension range queries. Specifically, Query 2

represents the application of multi-dimension OR range query

and Query 4 represents the application of multi-dimension

AND range query. These queries are the most typical and the

most commonly used microbenchmarks which could represent

applications based on DOTs.

We also create multi-client benchmarks based on Query 2

and 4, with each client querying a different range of values

to achieve load-balancing. Based on the table schema and

our sample queries, we use orderkey as the primary key

with custkey and orderdate as index columns. To test our

design with some real-world application, we use data provided

by AdMaster Inc. [1]. AdMaster Inc. is a marketing data

technology company that uses Big Data to provide businesses

with useful marketing data. The data consists of a set of

events for users interacting with ads on smartphones. The

overall dataset has more than 50 fields for each record. After

discussion with AdMaster data scientists, we have come up

with four workloads which represent queries that are daily

used by AdMaster to analyze their data. Based on the queries,

we use date and os as the index columns. Table II lists all the

benchmark queries that we have proposed.

Phoenix provides a built-in SQL engine to allow applica-

tions to directly run SQL queries without any modifications.

However, both HBase and CCIndex do not provide such an

engine. Thus, we provide an implementation of our synthetic

application and AdMaster workload queries based on the

CCIndex and HBase client APIs. This allows us to compare the

performance of our design with HBase, Phoenix, and CCIndex.

VI. PERFORMANCE EVALUATION
A. Experimental Testbed

Our experimental testbed consists of an InfiniBand cluster

with 20 nodes. Each node has two 14 core 2.4 GHz Intel

Xeon E5-2680 (broadwell) processors, 512 GB main memory,

Mellanox ConnextX-4 EDR (100 Gbps) HCA, and runs Cen-

tOS 7.2. Each node also has four 2 TB HDDs and one 400

GB SSD. All experiments are performed with HBase 1.1.2,

Apache Phoenix 4.8.1, and CCIndex 1.1.2 (based on HBase-

1.1.2). Our RDMA-HBase implementation is based on HBase

1.1.2. For the bulkload experiment, we use an HBase cluster

with 4 RegionServers and 1 HMaster. For application-level

evaluations, we use a 12 RegionServer and 1 HMaster HBase

cluster. For all other experiments, we use a 10 RegionServer

and 1 HMaster HBase cluster. Each RegionServer node also

runs a DataNode and NodeManager instance, and the HMaster

node has a NameNode and ResourceManager instance. The

remaining nodes in our testbed are used as client nodes.

B. Microbenchmarks
We evaluate the performance of primitive HBase operations

using our design and compare it with default HBase. The

performance of the thread models is quite similar for just one

client. Thus, we evaluate the RDMA-based design using only

the FP model. Fig. 7 shows the result of this analysis. We

observe that our design improves the latency of all operations.

In addition, the communication time is reduced by a factor of

5.7x, 3.2x, and 5.6x for scan, put, and get, respectively. These

results indicate that performance benefits can be obtained

by reducing the network communication time. The server

processing time is marginally better for our design owing to the

efficient buffer management scheme employed in our design.

We do not evaluate with [20] because their design is based on

a very old version of HBase.

As discussed in Section II, Phoenix provides multiple index

techniques. To understand the performance of each technique,

we run Queries 2 and 4 with each index. Fig. 8 shows the result

of this analysis. It can be observed that the global covered

index performs the best for both the queries. This is expected

since global covered index keeps data for all columns in each

index table, thus not requiring any random reads. Since, global

covered index performs the best, for all further evaluations

with Phoenix, we use global covered index.

C. Insert
To test insert performance, we create a table with two index

columns and one column family. We insert a total of 5 columns

for each record with 8 clients running in parallel and varied

the record size. Fig. 9 shows the result of this experiment.

The default CCIndex insert performance is considerably worse

than HBase because of the inefficient sequential insert design

and need to create new connections for each insert operation.

By leveraging RDMA-based communication, a parallel insert

design, and a connection cache, our design reduces the insert

overhead from 1541%, 317%, and 346% to 94%, 23%, and

57% for 16k, 32k, and 64k record sizes, respectively.

D. Synthetic Querying Benchmarks
Single Client Evaluation. In this sub-section, we evaluate

the performance of our proposed benchmark queries with our

design. The performance of the thread models is quite similar

for just one client. Thus, we only evaluate the RDMA-based

design using the FP model. Figures 10 and 11 show the

execution time for the TPC-H queries. For OR-based Queries

1 and 2, our design improves throughput up to 59% and 92%

for CCIndex and up to 35% and 70% for Phoenix, receptively.

Our design increases query throughput by up to 66.6%, and

51.1% when compared to CCIndex over HBase and by up

to 81% and 100% when compared to Phoenix over HBase

for AND-based Queries 3 and 4, respectively. We can observe

that there is more improvement for Phoenix and CCIndex than

with just default HBase. This is because our proposed designs

are specifically targeted for index techniques on HBase. We

also observe that Phoenix performance is not consistent and

depends to a large extent on the type of query; sometimes

even performing worse than HBase. To find the reason for

this, we further analyze the Phoenix performance runs. We find

that the Phoenix bulkload utility does not split HBase tables

into regions in an efficient manner. The number of regions

in these cases is less than what we see for CCIndex and

HBase with the same data. More number of regions implies

more parallel querying and load-balancing. Thus, it is possible

180

Query/Workload SQL Syntax Data Source
Query1 SELECT orderkey, orderdate, shippriority FROM orders WHERE custkey = C1 AND orderdate < O1 TPC-H

Query2 SELECT * FROM ORDERS where C1 < custkey < C2 OR O1 < orderdate < O2 TPC-H

Query3 SELECT orderpriority, count(*) as order count FROM orders WHERE orderdate >= O1 AND orderdate < O2 GROUP BY orderpriority TPC-H

Query4 SELECT * FROM ORDERS where C1 < custkey < C2 AND O1 < orderdate < O2 TPC-H

Workload1 SELECT count(*) as events, count(distinct distinctID) as users FROM event WHERE date BETWEEN D1 AND D2 AdMaster

Workload2 SELECT hour, count(*) as events, count(distinct distinctID) as users FROM event WHERE date BETWEEN D1 AND D2 GROUP BY
hour ORDER by hour

AdMaster

Workload3 SELECT data, event, count(*) as events, count(distinct distinctID) as users FROM event WHERE date BETWEEN D1 AND D2 GROUP
BY date, event ORDER by events DESC

AdMaster

Workload4 SELECT event, count(*) as events, count(distinct distinctID) as users FROM event
WHERE date BETWEEN D1 AND D2 AND os = O1 GROUP BY date, event ORDER by events DESC

AdMaster

Table II
BENCHMARK QUERIES

 0

 200

 400

 600

 800

 1000

Get
(IPoIB)

Get
(RDMA)

Put
(IPoIB)

Put
(RDMA)

Scan
(IPoIB)

Scan
(RDMA)

T
im

e
(u

s)

HBase Operation

Server Processing
Cient Processing

I/O
Other

Communication

Figure 7. Time Breakup of HBase Operations

 0

 50

 100

 150

 200

 250

 300

Query2 Query4

E
x
ec

u
ti

o
n
 T

im
e

(s
)

Query

Local Index
Global Uncovered Index

Global Covered Index

Figure 8. Performance Comparison of Index
Techniques in Apache Phoenix

 0

 20

 40

 60

 80

 100

 120

16k 32k 64k

L
at

en
cy

 (
m

s)

Record Size

HBase
HBase-CCIndex

RDMA-HBase-CCIndex

Figure 9. Comparison of Insert Performance

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

15M 150M

T
h

ro
u

g
h

p
u

t
(R

ec
o

rd
s/

s)

Data Size (# of records)

HBase
RDMA-HBase

HBase-Phoenix
RDMA-HBase-Phoenix

HBase-CCIndex
RDMA-HBase-CCIndex

(a) Query1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

15M 150M

T
h

ro
u

g
h

p
u

t
(R

ec
o

rd
s/

s)

Data Size (# of records)

HBase
RDMA-HBase

HBase-Phoenix
RDMA-HBase-Phoenix

HBase-CCIndex
RDMA-HBase-CCIndex

(b) Query2

Figure 10. Throughput of OR-Based Range Queries on TPC-H Orders
Table

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

15M 150M

T
h

ro
u

g
h

p
u

t
(R

ec
o

rd
s/

s)

Data Size (# of records)

HBase
RDMA-HBase

HBase-Phoenix
RDMA-HBase-Phoenix

HBase-CCIndex
RDMA-HBase-CCIndex

(a) Query3

 0

 2000

 4000

 6000

 8000

 10000

 12000

15M 150M

T
h

ro
u

g
h

p
u

t
(R

ec
o

rd
s/

s)

Data Size (# of records)

HBase
RDMA-HBase

HBase-Phoenix
RDMA-HBase-Phoenix

HBase-CCIndex
RDMA-HBase-CCIndex

(b) Query4

Figure 11. Throughput of AND-Based Range Queries on TPC-H Orders
Table

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

32 64 128

T
h

ro
u

g
h

p
u

t
(R

ec
o

rd
s/

s)

Number of Clients

RDMA-HBase-TS
RDMA-HBase-STS

RDMA-HBase-FP
RDMA-HBase-TS-Phoenix

RDMA-HBase-STS-Phoenix
RDMA-HBase-FP-Phoenix

RDMA-HBase-TS-CCIndex
RDMA-HBase-STS-CCIndex

RDMA-HBase-FP-CCIndex

(a) Query2

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

32 64 128

T
h

ro
u

g
h

p
u

t
(R

ec
o

rd
s/

s)

Number of Clients

RDMA-HBase-TS
RDMA-HBase-STS

RDMA-HBase-FP
RDMA-HBase-TS-Phoenix

RDMA-HBase-STS-Phoenix
RDMA-HBase-FP-Phoenix

RDMA-HBase-TS-CCIndex
RDMA-HBase-STS-CCIndex

RDMA-HBase-FP-CCIndex

(b) Query4

Figure 12. Performance Comparison of Thread Models with Queries on TPC-H Orders Table

that through parallel querying and load-balancing, HBase can

achieve higher throughput than Phoenix using indices. This

depends largely on the type of query, which is why we see

inconsistent performance with Phoenix.

Multi-Client Evaluation. Next, we compare the performance

of our proposed thread models in HBase using the multi-

client versions of Queries 2 and 4. As we have already

seen that the RDMA-based design is much better than the

default one, we only compare the RDMA-based designs in this

evaluation. This evaluation is done with 15M records. Results

are presented in Fig. 12. We observe interesting trends with

these results. Most importantly, STS performance is better than

FP for HBase and Phoenix in most cases (very close in others).

At 128 clients, STS is better than FP for both queries for

CCIndex and Phoenix. While for HBase, FP is better than STS.

This trend validates our claim that single threaded models are

good for index techniques, but not for default HBase because

of the short processing time of scan operations with CCIndex

and Phoenix. While TS performance is comparable to STS

and FP for a small number of clients, it rapidly degrades upon

increasing the number of clients, as expected.

Interestingly, Phoenix performance is extremely scalable for

the AND-based query, while for the OR-based query it does

not scale at all. For CCIndex, the trend is completely opposite.

This can be attributed to the internal query optimizers in

CCIndex and Phoenix. We believe that the CCIndex query

optimizer works extremely well for OR-based queries, while

the Phoenix one works well for AND-based queries. Our

results with other queries also validate this claim. We find that

the highly optimized query plan for Query4 with Phoenix is

181

 0

 200

 400

 600

 800

 1000

30M 100M

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Data Size (# of records)

HBase-Phoenix
RDMA-HBase-Phoenix

HBase-CCIndex
RDMA-HBase-CCIndex

(a) Workload 1

 0

 200

 400

 600

 800

 1000

30M 100M

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Data Size (# of records)

HBase-Phoenix
RDMA-HBase-Phoenix

HBase-CCIndex
RDMA-HBase-CCIndex

(b) Workload 2

 0

 200

 400

 600

 800

 1000

30M 100M

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Data Size (# of records)

HBase-Phoenix
RDMA-HBase-Phoenix

HBase-CCIndex
RDMA-HBase-CCIndex

(c) Workload 3

 0

 100

 200

 300

 400

 500

 600

30M 100M

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Data Size (# of records)

HBase-Phoenix
RDMA-HBase-Phoenix

HBase-CCIndex
RDMA-HBase-CCIndex

(d) Workload 4

Figure 13. Latency of AdMaster Workloads

 0

 500

 1000

 1500

 2000

 2500

32 64 128

A
v

er
ag

e
L

at
en

cy
 (

s)

Number of Clients

RDMA-HBase-TS
RDMA-HBase-STS

RDMA-HBase-FP
RDMA-HBase-TS-Phoenix

RDMA-HBase-STS-Phoenix
RDMA-HBase-FP-Phoenix

RDMA-HBase-TS-CCIndex
RDMA-HBase-STS-CCIndex

RDMA-HBase-FP-CCIndex

Figure 14. Performance Comparison of Thread Models with Multi-Client
AdMaster Workload

the reason why TS performs so well for Phoenix. Surprisingly,

with our experimental testbed, we found that using just two

threads in the main handler pool delivers the best performance

for the STS design. This is a big advantage of using the STS

design as it frees up the CPU for performing other tasks while

delivering even better performance than FP, which utilizes all

the cores in the CPU.

E. Application-level Evaluation
To test our design with some real-world application, we use

workloads and data provided by AdMaster. The total data size

is 100 Million records with an average record size of 524

bytes. We evaluate the workload performance with the whole

dataset and a subset of the data (30M). Fig. 13 shows the

performance of these workloads with our FP design. Compared

with CCIndex over default HBase, our design improves the

workload execution time up to 34%, 32%, 32%, and 19%

for Workloads 1, 2, 3, and 4, respectively. For Phoenix over

HBase, our design improves execution time up to 25%, 35%,

18%, and 27% for Workloads 1, 2, 3, and 4, respectively.

Thus, our design can provide benefits at the application level,

proving the efficiency of our approach.

We also design a multi-client workload which incorpo-

rates all the application workloads. In this workload, we run

multiple clients such that each workload is being run by a

quarter of the clients. We feel that this multi-client workload

accurately embodies the characteristics of the load and request

distribution received by AdMaster databases. This is because,

in real world applications, users typically run different types

of queries concurrently. We use 15M records from the Ad-

Master data for this evaluation. Results for this evaluation are

presented in Fig. 14. Similar to the TPC-H multi-client bench-

mark, we observe that STS and FP have similar performance

for CCIndex and Phoenix, while for HBase FP has the least

average latency for 128 clients. TS performance suffers from

the overheads of threading, particularly for 64 and 128 clients.

To achieve optimal performance with STS, we observe that

we need to increase the number of main handler threads from

two (in case of TPC-H) to four. This is primarily because

clients are running different workloads, thus more handlers

are needed to ensure that a big request does not block other

requests. Thus, while STS and FP performance are similar,

STS still uses significantly less number of threads.
F. Discussion

Our experimental evaluation provides interesting insights

into the performance characteristics of SQL queries on DOTs

with different index techniques and thread models. While an

RDMA-based design always performs better, the same can

not be said about CCIndex or Phoenix. Both perform well in

different scenarios. CCIndex performance is scalable for OR-

based queries and Phoenix performance is scalable for AND-

based queries. The internal query optimizers are responsible

for this trend. In addition, inefficient table splitting logic

used by the Phoenix bulkload utility leads to inconsistent

querying performance. This opens up possible future research

avenues like enhancing the query optimizer and bulkload

utility. Evaluation of different thread models shows that a

functionally partitioned model is sub-optimal when dealing

with index techniques. While this model does perform well,

the shared threaded model can provide similar performance

with significantly fewer cores. This analysis should be kept

in mind when designing DOT-based systems, especially when

using any form of indexing.

VII. RELATED WORK

A lot of research has been done on building indices on

database systems. With distributed NoSQL databases such as

HBase becoming popular in recent times, existing research

has been ported over to HBase and more index techniques

have been proposed on HBase. IHBase [5] is built on HBase

and builds indices on tables to reduce the range of rows

scanned when querying the table. It builds the index by directly

working on the internal HBase files after they are flushed

to disk. However, it still requires random reads for querying

data. Authors in [17] propose a Local and Clustering Index

(LCIndex) on HBase. Their main goal is to improve insert

performance for secondary indices while compromising on

querying performance. IRIndex [7] or Inside Region Index,

builds an index for each file in HBase, instead of each region.

For processing queries, IRIndex sorts keys of the original table

before scanning the table, thereby drastically reducing random

reads. CCIndex [30] and Apache Phoenix [3] also provide

index techniques on HBase which have already been discussed

at length in this paper.

182

Improving HBase performance is another area where a lot

of research has been done. AsyncHBase [4] provides with an

asynchronous version of the HBase client API allowing for

more fine-grain control of HBase operations and flexibility

when writing applications. Authors in [20] use RDMA to

accelerate HBase. They propose RDMA-based get and put

operations in HBase and show benefits using YCSB. Their

approach uses a functionally partitioned model for achieving

high concurrency. However, they consider only get and put

operations and disregard other important operations such as

scan. In addition, their designs are not specifically optimized

for index techniques. Our work is unique in the sense that

we thoroughly analyze the requirements and bottlenecks of

index techniques on HBase from a networking perspective and

propose designs to accelerate them. In addition, our benchmark

queries and data are from real-world applications.
VIII. CONCLUSION AND FUTURE WORK

In this paper, we first analyzed the requirements of index

techniques on DOTs from a networking perspective. Based on

our experiences and observations, we proposed an RDMA-

based communication framework to reduce the latency of

primary operations on DOTs. As proof of concept, we imple-

mented our design using CCIndex and Phoenix over HBase.

We found that there is a lack of benchmarks to evaluate

index techniques and proposed multiple benchmarks to fill this

gap. We explored different thread models for our design and

showed that single thread designs are more suited for index

techniques. Our evaluations show that using an RDMA-based

communication framework can reduce the latency of get, put,

and scan operations in HBase. Our insert design reduces the

insert latency by up to 8x. Our design can reduce execution

time up to 35% for real-world AdMaster workloads and data

(100M records). Thus, our design not only allows for faster

analysis of data but at the same time reduces the overhead for

inserting data. Our designs can significantly benefit companies

such as AdMaster Inc. perform faster data analysis leading to

better decision making.
In the future, we plan to evaluate with more index tech-

niques and find additional application scenarios for our pro-

posed design. We also plan to make our benchmarks, data, and

designs publicly available for community use.

REFERENCES

[1] AdMaster. http://www.admaster.com.cn/eng/.
[2] Apache HBase. http://www.hbase.apache.org.
[3] Apache Phoenix. http://phoenix.apache.org/.
[4] AsyncHBase. http://opentsdb.github.io/asynchbase/index.html.
[5] IHBase. https://github.com/ykulbak/ihbase.
[6] InfiniBand Trade Association. http://www.infinibandta.com.
[7] IRIndex. https://github.com/wanhao/IRIndex.
[8] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava, and R. Ra-

makrishnan. Asynchronous View Maintenance for VLSD Databases. In
Proceedings of the 2009 ACM SIGMOD International Conference on
Management of Data, pages 179–192. ACM, 2009.

[9] I. T. Association et al. Supplement to Infiniband Architecture Specifi-
cation Volume 1, Release 1.2. 1: Annex A16: RDMA over Converged
Ethernet (RoCE), 2010.

[10] M. Baker, H. Ong, and A. Shafi. A Study of Java Networking
Performance on a Linux Cluster. Distributed Systems Group, University
of Portsmouth, UK, 2004.

[11] R. Cattell. Scalable SQL and NoSQL Data Stores. Acm Sigmod Record,
39(4):12–27, 2011.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed
Storage System for Structured Data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume
7, OSDI ’06, pages 15–15, Berkeley, CA, USA, 2006. USENIX Asso-
ciation.

[13] D. A. Chappell and T. Jewell. Java Web Services. Tecniche Nuove,
2002.

[14] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohan-
non, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS:
Yahoo!’s Hosted Data Serving Platform. Proceedings of the VLDB
Endowment, 1(2):1277–1288, 2008.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing, pages 143–154. ACM,
2010.

[16] T. P. P. Council. TPC-H Benchmark Specification. Published at
http://www.tcp.org/hspec.html, 2008.

[17] C. Feng, X. Yang, F. Liang, X.-H. Sun, and Z. Xu. LCIndex: A Local
and Clustering Index on Distributed Ordered Tables for Flexible Multi-
Dimensional Range Queries. In Parallel Processing (ICPP), 2015 44th
International Conference on, pages 719–728. IEEE, 2015.

[18] B. A. Forouzan. TCP/IP Protocol Suite. McGraw-Hill, Inc., 2002.
[19] P. W. Frey and G. Alonso. Minimizing the Hidden Cost of RDMA. In

Distributed Computing Systems, 2009. ICDCS’09. 29th IEEE Interna-
tional Conference on, pages 553–560. IEEE, 2009.

[20] J. Huang, X. Ouyang, J. Jose, M. Wasi-ur Rahman, H. Wang, M. Luo,
H. Subramoni, C. Murthy, and D. K. Panda. High-Performance Design
of HBase with RDMA over InfiniBand. In Parallel & Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International, pages
774–785. IEEE, 2012.

[21] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,
H. Subramoni, C. Murthy, and D. K. Panda. High Performance
RDMA-based Design of HDFS over InfiniBand. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, page 35. IEEE Computer Society Press, 2012.

[22] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim, C. Engel-
mann, and G. Shipman. Functional Partitioning to Optimize end-to-end
Performance on Many-core Architectures. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12. IEEE Computer Society,
2010.

[23] T. O’Reilly. What is Web 2.0: Design Patterns and Business Models for
the Next Generation of Software. Communications & strategies, (1):17,
2007.

[24] P. J. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Pearson Education, 2012.

[25] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi. Indexing Multi-
dimensional Data in a Cloud System. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, pages 591–
602. ACM, 2010.

[26] M. Wasi-ur Rahman, N. S. Islam, X. Lu, J. Jose, H. Subramoni, H. Wang,
and D. K. Panda. High-Performance RDMA-Based Design of Hadoop
MapReduce over InfiniBand. In Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 1908–1917. IEEE, 2013.

[27] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services. In ACM SIGOPS Operating
Systems Review, volume 35, pages 230–243. ACM, 2001.

[28] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu. Efficient B-tree Based Index-
ing for Cloud Data Processing. Proceedings of the VLDB Endowment,
3(1-2):1207–1218, 2010.

[29] X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng. An Efficient Multi-
dimensional Index for Cloud Data Management. In Proceedings of the
First International Workshop on Cloud Data Management, pages 17–24.
ACM, 2009.

[30] Y. Zou, J. Liu, S. Wang, L. Zha, and Z. Xu. CCIndex: A Complemental
Clustering Index on Distributed Ordered Tables for Multi-dimensional
Range Queries. In IFIP International Conference on Network and
Parallel Computing, pages 247–261. Springer, 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

