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ABSTRACT
Big Data Systems are becoming increasingly complex and gen-
erally have very high operational costs. Cloud computing offers
attractive solutions for managing large scale systems. However,
one of the major bottlenecks in VM performance is virtualized I/O.
Since Big Data applications and middleware rely heavily on high
performance interconnects such as InfiniBand, the performance of
virtualized InfiniBand interfaces is vital. Single Root I/O Virtual-
ization (SR-IOV) is a hardware based approach which offers signif-
icant performance benefits as compared to software based I/O vir-
tualization. With the increasing adoption of InfiniBand network for
cloud computing, it is important to evaluate the performance ben-
efits of SR-IOV for InfiniBand networks; especially to see the per-
formance characteristics of Big Data applications and middleware
under different scenarios. We characterize the main performance
factors for different workloads through this study (such as map task
scheduling, I/O, data replication, etc.). Our experimental evalua-
tions show that the performance difference for a wide set of Big
Data benchmarks and applications over SR-IOV with InfiniBand
using RDMA-enabled Hadoop as compared to native InfiniBand
network is just 5 - 15%. In addition, with RDMA-enabled Hadoop,
we see 20.9 - 81.6% performance improvement for RDMA as com-
pared to IPoIB.
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1. INTRODUCTION
Over the years, there has been a tremendous rise in the demand

for computational power. To meet this ever-growing demand, mod-
ern High-Performance Computing (HPC) clusters and Big Data
Systems have become very complex and large in size. With the
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prevalence of high-speed networking interconnects and multi-core
processors, efficient sharing of resources is becoming more and
more important. Also, a large number of users, particularly enter-
prise users, experience highly variable workloads. For such users,
cloud-based systems and clusters are attractive options that offer
scalable, reliable and flexible services [20]. Cloud computing re-
lies on sharing of resources to provide coherence and save power
and money.

Although several improvements have been made in virtualization
technology over the years [17], [39], running Big Data applications
on VMs still remains a major challenge. This is because while
the current virtualization technology can deliver near native CPU
performance, the I/O performance in virtualized systems is a major
bottleneck [35]. Since many applications and middleware in the
Big Data community rely heavily on the features and performance
offered by modern networking interconnects, the I/O performance
in virtualized environments will be a major driver in the adoption
of cloud computing for Big Data applications.

I/O virtualization technologies can broadly be classified as either
hardware-based or software-based. In software-based approaches
[36], the virtual machine monitor (VMM) usually emulates the net-
work interface controller (NIC) to provide virtualized I/O access
points to the user. In such approaches, the VM cannot directly
access the physical device and must go through the VMM. This
causes a lot of context-switching and results in significant perfor-
mance degradation. Many approaches have been proposed to al-
low the VM to directly access physical devices [32], [9]. Such
hardware-based approaches completely bypass the VMM and can
potentially deliver higher performance. Single-Root I/O Virtualiza-
tion (SR-IOV) [5] is one such approach. With SR-IOV, a PCI Ex-
press (PCIe) device can present itself as multiple virtual devices,
where each virtual device can be assigned to a VM. Recent stud-
ies [18], [26] have shown that SR-IOV is significantly better than
software-based approaches and can deliver near native I/O perfor-
mance.

In recent years, modern interconnects such as InfiniBand [4],
have seen increased usage for HPC and Big Data Systems. Infini-
Band offers several advantages over the traditional Ethernet tech-
nology, such as Remote Direct Memory Access (RDMA), low la-
tency and high bandwidth. Moreover, socket based applications
can also be run with InfiniBand hardware using the IP over Infini-
Band (IPoIB) protocol [15]. Apache Hadoop [1] is one of the most
popular open-source Big Data stacks currently available. In the
last few years, it has become the de-facto package for analysis of
Big Data. RDMA-Hadoop [6], based on Apache Hadoop, is a pub-
licly available stack for InfiniBand clusters. It provides RDMA



enhanced designs in Hadoop. The emergence of I/O virtualization
technologies like SR-IOV and the increased adoption of InfiniBand
networks for cloud deployments leads us to a broad question: Is
SR-IOV support for InfiniBand networks ready for “Prime-Time”
Big Data workloads?

Evaluation Platform Hadoop Distribution
VM SR-IOV InfiniBand Hadoop RDMA-Hadoop

[19], [38], [31] × ×
√ √

×
[33] × ×

√ √ √

[13], [21], [41]
√

× ×
√

×
[37], [24]

√ √ √
× ×

This paper
√ √ √ √ √

Table 1: Comparison with existing studies

The performance characteristics of InfiniBand native hardware
have been thoroughly evaluated by the Big Data community. How-
ever, performance evaluation of InfiniBand in virtualized environ-
ments with SR-IOV, has not been systematically carried out, par-
ticularly for Big Data applications. We summarize existing studies
in this area in Table 1. Studies [19], [38], [31] present their eval-
uations with InfiniBand and Hadoop, but don’t use either VMs or
RDMA-Hadoop for their evaluations. One study [33] focuses on
InfiniBand and Apache and RDMA-Hadoop. However, it presents
no results with VMs. Several studies [13], [21], [41] use VMs and
Apache Hadoop for evaluations, but do not consider SR-IOV or use
InfiniBand. Some studies [37], [24] present evaluations with SR-
IOV-enabled VMs on InfiniBand, but focus on MPI based work-
loads rather than Big Data workloads. Therefore, there exist rel-
atively few evaluations which consider all aspects covered in Ta-
ble 1. In this paper, we present an in-depth study of all these im-
portant aspects to understand the trade-offs and performance at-
tributes of using SR-IOV on virtualized InfiniBand clusters for Big
Data applications. To summarize, we address the following critical
problems:

1. Big Data workloads are very diverse. What are the trade-offs
and performance attributes when using SR-IOV, compared
to native InfiniBand hardware, for different Big Data appli-
cations and data sizes?

2. Modern processors with multi-cores can run VMs with vari-
ous subscription policies (VM per node, VM per socket, and
VM per core). What is the impact of such policies on the
performance of Big Data applications?

3. Socket based applications can run on InfiniBand hardware
using IPoIB. What are the performance characteristics of
benchmark applications for different InfiniBand communica-
tion modes (IPoIB and RDMA)?

We carry out multiple experiments to find answers to these criti-
cal problems.

The main contributions of this paper are as follows:

1. Provide a comprehensive evaluation of the performance of
Hadoop workloads and applications on SR-IOV-enabled In-
finiBand clusters

2. Understand the critical factors as well as the best configu-
ration for the execution of different Hadoop workloads and
applications in virtualized environments (Table 3)

3. Provide an answer to the question: Is SR-IOV support for
InfiniBand networks ready for Hadoop workloads and appli-
cations?

Our evaluations show that the performance overhead of Big Data
workloads with SR-IOV over InfiniBand is within 5 - 15% of native
InfiniBand hardware performance. Also, with RDMA-Hadoop, we
see 20.9 - 81.6% performance improvement for RDMA as com-
pared to IPoIB.

The rest of this paper is organized as follows. Section 2 presents
an overview of SR-IOV, InfiniBand, and Apache and RDMA-Hadoop.
Section 3 describes the methodology used for evaluation and Sec-
tion 4 presents our performance evaluation results. We discuss re-
lated work in Section 5 and conclude our work in Section 6.

2. BACKGROUND
In this section, we provide an overview of SR-IOV, InfiniBand,

and Apache and RDMA-Hadoop.

2.1 Single Root I/O Virtualization (SR-IOV)
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Figure 1: Overview of SR-IOV

Single Root I/O Virtualization (SR-IOV) [5] is a standard for PCI
Express (PCIe), which specifies the native I/O virtualization capa-
bilities in PCIe adapters. By using SR-IOV, a single physical device
or Physical Function (PF), can be presented as multiple virtual de-
vices or Virtual Functions (VFs). As is evident by the solid lines in
Figure 1, a single VM can be assigned a virtual device through PCI
pass-through, which allows direct access to the VF from each VM.
SR-IOV is a hardware-based approach for implementing I/O virtu-
alization. Thus, the drivers of the PF can also be used for VFs, and
its performance is generally higher than the traditional software-
based I/O virtualization methods.

2.2 InfiniBand
InfiniBand [4] is a high-performance networking interconnect

that is widely used for high-performance computing on supercom-
puters. The latest TOP500 [8] rankings released in June 2016 indi-
cate that more than 40% of the top 500 supercomputers are using
InfiniBand as their primary interconnect. Remote Direct Memory
Access (RDMA), one of the main features of InfiniBand, allows a
node to directly access the CPU memory of another remote node
without any involvement from the remote node. InfiniBand com-
munication is carried out in userspace and in a ‘zero-copy’ manner.
In addition, InfiniBand uses hardware offload for all protocol pro-
cessing. This results in low latency and high bandwidth communi-
cation. In addition, Traditional socket (TCP/IP) based applications
can be run over InfiniBand hardware using the IP over InfiniBand
(IPoIB) protocol.



2.3 Apache Hadoop
MapReduce [16] is a framework introduced by Google which is

used for large-scale parallel processing of data. Apache Hadoop,
an open-source implementation of the MapReduce framework, has
become extremely popular in recent times for Big Data process-
ing. The Apache Hadoop framework is composed of the following
modules:

1. Hadoop Common contains utilities and libraries that are
used by other modules.

2. Hadoop Distributed File System (HDFS) is a distributed
filesystem which offers fault-tolerant and high-throughput ac-
cess to data.

3. Hadoop YARN is a resource management module that also
handles job scheduling.

4. Hadoop MapReduce is an implementation of the MapRe-
duce framework for parallel processing of data.

2.4 RDMA-Hadoop
RDMA-Hadoop [6] is a publicly available package that is built

on Apache Hadoop. It can be used to exploit the advantages of
InfiniBand on RDMA-enabled clusters for Big Data applications.
RDMA-Hadoop provides advanced designs for HDFS [23], MapRe-
duce [40] and Remote Procedure Call (RPC) [27] components which
are optimized for RDMA-enabled clusters and deliver high perfor-
mance. The HDFS plugin supports multiple modes of operation:
HHH - The default mode, HHH-M - Adds support for in-memory
I/O operations, and HHH-L - For use with Lustre Filesystem. It
also has policies which make efficient use of heterogeneous storage
devices (SSD, HDD, RAM Disk, and Lustre). The MapReduce plu-
gin has an advanced design that provides with RDMA-based shuf-
fle, prefetching of map output and optimized overlapping of the dif-
ferent stages in MapReduce. The RPC plugin offers JVM-bypassed
buffer management with smart buffer allocation and RDMA-based
data transmission.

3. EVALUATION METHODOLOGY
In this section, we discuss the different factors of using Infini-

Band in virtualized environments for Big Data. We use different
dimensions for evaluating the performance characteristics of using
SR-IOV with InfiniBand for Big Data, as shown in Figure 2. Ex-
perimental results for these dimensions are presented in Section 4.
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Figure 2: Evaluation Dimensions

3.1 Virtual Machine Subscription Policy
Multi-core architectures allow for the execution of multiple par-

allel jobs to improve CPU utilization and network resources. In
such cases, using virtual machines can offer performance isolation
and easy resource management. However, the performance char-
acteristics can vary significantly based on the virtual machine sub-
scription policy. In Section 4.2, we present the performance charac-
teristics of running different number of VMs per node. Specifically,
we evaluate the performance for VM per CPU node, VM per CPU
socket (NUMA-node), and multiple VMs per CPU socket configu-
rations.

3.2 InfiniBand Communication Mode
As introduced in Section 2.2, InfiniBand offers multiple commu-

nication modes. The performance of these modes has been widely
evaluated with native InfiniBand hardware. In Section 4.4, we
present the performance evaluation of different communication modes
for Big Data workloads with SR-IOV over InfiniBand. Specifically,
we evaluate the performance of RDMA and IPoIB modes on SR-
IOV and compare it to that of native hardware.

3.3 Data Size
Volume (or data size) is one of the most important aspects of

Big Data (hence the name Big Data), which is generally ignored
during performance evaluations. For our performance evaluations,
we use 3 data sizes - Small, Medium, and Large. For TestDFSIO,
the values of these sizes are 48 GB, 72 GB, and 96 GB, respectively.
For all other benchmarks, the values are 20 GB, 40 GB, and 60 GB,
respectively.

3.4 Type of Big Data Workload
Big Data Applications are very diverse in terms of their CPU

and I/O utilization. Since SR-IOV is an approach to improve I/O
performance, the comparison of different workload execution us-
ing SR-IOV is important to analyze. We select different types of
workloads (CPU Intensive, I/O Intensive and Mixed) and applica-
tions, and evaluate their performance trade-offs with SR-IOV as
compared to native hardware. The workloads and applications we
have used are presented in Table 2. Results are presented in Sec-
tions 4.3 and 4.5.

4. PERFORMANCE EVALUATION

4.1 Experiment Setup
Our testbed consists of nine physical nodes on the Chameleon

Cloud [2], where each node has a 24-core 2.3 GHz Intel Xeon E5-
2670 (Haswell) processor with 128 GB main memory and equipped
with Mellanox ConnectX-3 FDR (56 Gbps) HCAs and PCI Gen3
interfaces. We use CentOS Linux 7.1.1503 (Core) with kernel 3.10.0-
229.el7.x86_64. In addition, we use the Mellanox OpenFabrics En-
terprise Distribution MLNX_OFED_LINUX-3.0-1.0.1 to provide
the InfiniBand interface with SR-IOV support, OpenJDK 1.7.0_91
as the Java package, and KVM as the Virtual Machine Monitor
(VMM). For consistency, we use the same OS and software ver-
sions for the virtual machines as well.

For efficiently building a large scale Big Data Cloud Testbed us-
ing bare metal InfiniBand nodes, we created a dedicated appliance,
as shown in Figure 3. The appliance has IOMMU and SR-IOV
enabled by default for hardware-based virtualization. It also has
the Open Fabrics Enterprise Distribution (OFED) [30] stack and all
necessary virtualization packages pre-installed. Inside this appli-
ance, a small VM image is provided along with a VM launch script
which launches VMs on all necessary bare metal nodes and runs an



Benchmark/Application Type of workload Description
TestDFSIO (Read) I/O Intensive (Read) Benchmark for testing the read throughput of the Hadoop cluster

TeraGen I/O Intensive (Write) Benchmark to generate desired rows of data to be later used by TeraSort
TeraSort Mixed Benchmark to sort rows of data

Sort Mixed Benchmark to sort text input data
Wordcount CPU Intensive Benchmark to count the occurrences of each word in multiple text files

CloudBurst [34] - MapReduce-based read-mapping algorithm optimized for mapping of sequence data
MR-MSPolygraph [25, 14] - MapReduce-based implementation of algorithm for peptide identification from mass spectrometry data

Self-join [10] - MapReduce-based algorithm for generating association among given fields

Table 2: Benchmarks and Applications used for evaluation
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Figure 4: Impact of Virtual Machine Subscription Policy
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Figure 3: RDMA-Hadoop Appliance

initialization script inside each VM on launch. This initialization
script configures InfiniBand, installs Hadoop and then configures
the necessary environment inside the VM to run Hadoop jobs. This
script also configures hostnames, DNS resolution files, and ssh to
ensure Hadoop works correctly. In addition, these scripts have been
written to take advantage of the large number of cores in modern
processors by launching and configuring VMs in parallel, which
greatly reduces the system setup time.

Using this appliance, users can easily setup a Big Data cloud
system to run Hadoop applications. The user just has to launch
bare metal nodes using the appliance image and then run the launch
script on one of the nodes. This appliance is publicly available on
the Chameleon Cloud [7].

We have used the standard benchmark suite that comes with
Apache Hadoop (v 2.7.1) for our experiments. All benchmarks are
run using RDMA-Hadoop 0.9.9 (based on Apache Hadoop 2.7.1).
The results have been averaged over three runs to ensure a fair com-
parison.

All experiments are performed on the same physical set of nodes
with a total of 96 maps and 48 reduces. 70% of the RAM disk is
used for data storage. HDFS block size is kept to 256 MB. The
NameNode runs on a different node of the Hadoop cluster and the

benchmark is run in the NameNode. Each NodeManager is con-
figured to assign a minimum of 4 GB memory per container. This
ensures that in all cases the total physical resources used are the
same.

All native experiments are performed with 8 physical nodes. Each
node has a single 230 GB HDD. We evaluate 2 cases for native ex-
periments - 1 DataNode, 1 NodeManager per node, which is the
default case, and 2 DataNodes, 2 NodeManagers per node (hence-
forth referred to as Native (1 DN, 1 NM) and Native (2 DN, 2 NM),
respectively). Each NodeManager is configured to run with 12 and
6 concurrent containers, respectively. For all VM experiments, we
use the same nodes as the native experiments. We also make sure
that the total number of containers launched per physical node is
12 for all cases.

4.2 Impact of Virtual Machine Subscription
Policy

To understand the performance characteristics of running mul-
tiple VMs per node, we conduct a VM subscription policy study
for TeraGen and TeraSort. We go from 1 VM per node to 8 VMs
per node, and compare the performance with Native (1 DN, 1NM)
case. Figure 4 shows the results of this study. We observe that with
2 VMs per node (VM per socket), we achieve the best performance.
Increasing the number of VMs beyond that only decreases the per-
formance. This is because the overhead of running multiple VMs
outweighs the benefits of having multiple VMs per node. Since the
VM per node configuration has the least overhead for VM deploy-
ments, and the performance of VM per socket is the best among all
cases, we only use VM per node and VM per socket VM config-
urations for all further experiments. For VM per socket, on each
physical node, 2 NodeManagers, and 2 DataNodes are running. To
see if this is the reason that VM per socket performance is the best,
we compare both Native (1 DN, 1 NM) and Native (2 DN, 2 NM)
performance with the performance of different VM configurations.

4.3 Impact of type of Workload
In this section, we present the evaluation results for different

Hadoop workloads. We evaluate the performance of different Hadoop
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Figure 5: Performance Characterization of CPU and I/O Intensive Workloads on SR-IOV enabled InfiniBand Clusters
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Figure 6: Container Launch Time Analysis for TeraGen - 60 GB (RDMA)

benchmarks for VM per host node and VM per host CPU socket
configurations. We compare the results with those of Native (1
DN, 1 NM) and Native (2 DN, 2 NM) configurations. We choose
TestDFSIO, TeraGen, TeraSort, Sort and Wordcount benchmarks
as representatives of different Big Data workloads. TestDFSIO
and TeraGen are I/O intensive workloads, while Wordcount is CPU
intensive, and Sort and TeraSort are mixed workloads. The per-
formance evaluation results are presented in Figures 5 and 7. In
all cases, we observe that the VM per node configuration is only
slightly worse than Native (1 DN, 1 NM) configuration (about 15%
or less).

4.3.1 CPU Intensive Workloads
Results for Wordcount are presented in Figure 5(c). We ob-

serve that Native (1 DN, 1 NM), Native (2 DN, 2 NM), and VM
per socket performance is very similar. VM per node performance
is only slightly worse that Native (1 DN, 1 NM). This is because
Wordcount is a CPU intensive workload, thus the performance of
different configurations will be similar.

4.3.2 I/O Intensive Workloads
The performance evaluation results are presented in Figure 5(a)

and Figure 5(b). We notice that compared to Native (1 DN, 1 NM)
performance, VM per socket performance is better for TeraGen and
worse for TestDFSIO Read. We also observe that Native (2 DN, 2
NM) performance is comparable to VM per socket case. This is
because, for both cases, the same number of Hadoop daemons are
running per node. For TestDFSIO Read, most of the reads are local,
which is why running multiple DataNodes and NodeManagers on
each node reduces performance. On the contrary, this increases
performance for TeraGen. This is because the data generated needs
to be replicated to multiple nodes, which can be done faster when
running 2 DataNodes per node as more daemons are available to

send data to other DataNodes.
For VM per socket and Native (2 DN, 2 NM) configurations, 2

NodeManagers are running per physical node and 1 NodeManager
is running for the Native (1 DN, 1 NM) configuration. To see how
this impacts performance, we analyzed the container launch times
for TeraGen (60 GB). Figure 6 shows the results of this analysis. In
each graph, we show the running time for each container launched
by the Hadoop framework. The first point on each line denotes the
container launch time and the second point denotes the container
completion time. The line that starts from time 0 signifies the Ap-
plication Master Container. The running time for this container
gives us an estimate of the runtime of the Hadoop application. We
observe that although the average container runtime for Native con-
figuration is smaller than that of VM per socket configuration, the
containers are launched much faster for the latter case. All con-
tainers are launched and running by the 11th second for VM per
socket configuration, while containers are launched as late as the
17th second for Native (1 DN, 1 NM) configuration. In addition,
most containers complete earlier for VM per socket configuration.
This also explains why Native (2 DN, 2 NM) and VM per socket
performance is better than or similar to Native (1 DN, 1 NM) per-
formance for most cases.

4.3.3 Mixed Workloads
From Figure 7(a) we see that for Sort, the performance of Native

(1 DN, 1 NM), Native (2 DN, 2 NM) and VM per socket is com-
parable. However, for TeraSort (Figure 7(b)) we see that VM per
socket performance is the best and Native (2 DN, 2 NM) is better
than Native (1 DN, 1 NM). To see whether these results were be-
cause of the RDMA-enhanced designs in RDMA-Hadoop, we also
analyzed the performance of TeraSort for IPoIB (Figure 7(c)). We
observe the same trend for IPoIB as well. Thus, we can conclude
that some system level factor is the reason for this trend. To further
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Figure 7: Performance Characterization of Mixed Workloads on SR-IOV enabled InfiniBand Clusters
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Figure 8: CPU Utilization Analysis for TeraSort - 40 GB (RDMA)

investigate this reason for this trend, we conduct a CPU utiliza-
tion analysis for TeraSort with Native (2 DN, 2 NM) and VM per
socket configurations. Figure 8 shows the results of this analysis.
We can see that the main reason that performance of Native (2 DN,
2 NM) is worse than VM per socket configuration is I/O wait time.
As discussed in [3], the hypervisor does buffering for I/O in VMs,
which is why I/O in VMs is more efficient than in the Native mode
for this case. We also observe that system CPU usage is higher
for Native (2 DN, 2 NM). This is because the CPU usage statistics
were taken on the physical hosts and the system usage inside the
VMs is reported as user CPU usage by the host. We did a similar
analysis for Sort, and we observed the same trend as for TeraSort.
However, since Sort uses a replication factor of 3 and TeraSort uses
a replication factor of 1, there is significantly more I/O involved
for Sort. This reduces the difference between native and VM I/O
performance and thus for Sort, the performance of different config-
uration modes is comparable.

These trends indicate that by carefully selecting the VM sub-

scription policy, we can achieve near native performance, and in
some cases even better than native performance.

4.4 Impact of InfiniBand Communication Mode
Traditional socket (TCP/IP) based applications can be run over

InfiniBand hardware using a protocol known as IP over InfiniBand
(IPoIB). In this section, we present performance evaluation results
when using RDMA compared to IPoIB for virtual environments
with SR-IOV.

Figure 9 shows the results of our evaluation. We notice that
RDMA is better than IPoIB for all benchmarks. For Sort and Ter-
aGen, we see significant performance difference between RDMA
and IPoIB. The maximum improvement we see is 74.3% for Sort,
20.9% for TeraSort, and 47.1% for Sort with VM per node. The
maximum improvements for VM per socket are 81.6% for Sort,
45.6% for TeraSort, and 45.9% for Sort.

From Figures 5 and 7, we see that the performance difference
between Native (1 DN, 1 NM) and VM per node modes is the most
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Figure 9: Impact of InfiniBand Communication Mode (IPoIB v/s RDMA-IB)
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Figure 10: CPU Utilization Analysis for Sort - 60 GB (VM per node)
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Figure 11: Disk I/O Analysis for Sort - 60 GB (VM per node)
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Figure 12: Application Level Evaluations

for TestDFSIO and TeraGen, especially for the largest data size.
For all other workloads, the size of data doesn’t affect the perfor-
mance of different modes. This trend indicates that disk I/O is the
main bottleneck for virtual machines when compared with native
execution.

We also observe that for large data sizes, there is a significant
performance difference between IPoIB and RDMA for TeraGen
and Sort. To see where RDMA is winning over IPoIB, we did a
performance analysis for Sort (60 GB). Figures 10 and 11 show
the CPU utilization analysis and disk I/O analysis, respectively.
We see that the user CPU utilization is very high for RDMA as
compared to IPoIB. This is mainly because we use polling for re-
ceiving messages when using RDMA, which increases the user
CPU utilization and increases performance. Considering Disk I/O,
we observe that for RDMA, there is significantly less I/O than
IPoIB. RDMA-Hadoop uses optimized storage policies for HDFS
in RDMA mode [22], which try to keep important data in mem-
ory and make use of RAM Disk for storing some of the application
data, thereby reducing the amount of Disk I/O required.

4.5 Evaluation with Applications
To see whether running Hadoop on SR-IOV-enabled InfiniBand

clusters is actually practical, we did evaluations at the application
level. We evaluated with CloudBurst, MR-MSPolygraph, and Self-
join which are MapReduce-based applications widely used by sci-
entists. Figure 12 shows the results of our evaluation. For all ap-
plications, we observe that the VM per node performance is only
slightly worse than Native (1 DN, 1 NM) (only 7.1%, 3.4%, and
8.7% overhead for CloudBurst, MR-MSPolygraph, and Self-join,
respectively). In addition, Native (2 DN, 2 NM) performance is
comparable to VM per socket performance. This indicates that SR-

IOV enabled InfiniBand clusters can be used for Big Data applica-
tions with minimal overhead.

4.6 Summary of Evaluation
Table 3 shows the summary of our evaluation of the different

benchmarks and applications. For TestDFSIO (Read), Native (1
DN, 1 NM) gives the best performance. Overall, we observe that
with multiple DataNodes and NodeManagers per physical node, we
get better I/O and task scheduling performance. However, the CPU
performance suffers because of the additional overhead of running
multiple DataNodes and NodeManagers. This leads us to conclude
that I/O is the main bottleneck, which makes sense, since all reads
are local. However, for Teragen, we observe that Native (2 DN,
2 NM) provides the best performance. Here, the data needs to be
replicated to multiple nodes. Thus, the faster we can start generat-
ing the data and copying it, the better our execution time will be,
which is why the factor most affecting performance is map task
scheduling and data replication. VM per socket performance is the
best for TeraSort. This implies that data replication is the critical
factor here, since, we have multiple DataNodes running on each
physical node, and TeraSort requires data to be replicated to mul-
tiple nodes. Both the Native cases give the best performance for
Sort and Wordcount. Since, adding more DataNodes and NodeM-
anagers does not improve performance here, we conclude that the
main bottleneck here is CPU performance. For applications MR-
MSPolygraph and Self-join, Native (2 DN, 2 NM) gives the best
performance, and VM per socket performance is better than VM
per node performance. So, the factor most affecting performance
here is map/reduce task scheduling and data replication. For Cloud-
Burst, Native (1 DN, 1 NM) and VM per node deliver the best
performance for Native and VM Modes, respectively. Thus, CPU



Benchmark/Application Type of workload Factor most critical to performance Native Mode with best performance VM Mode with best performance % Overhead
TestDFSIO (Read) I/O Intensive (Read) I/O Native (1 DN, 1 NM) VM per node 12.8%

TeraGen I/O Intensive (Write) Map Task Scheduling & Data Replication Native (2 DN, 2 NM) VM per node 3%
TeraSort Mixed Data Replication Native (2DN, 2 NM) VM per socket -12.5%

Sort Mixed Raw CPU Performance Native (both cases) VM per socket 4.5%
Wordcount CPU Intensive Raw CPU Performance Native (both cases) VM per socket 0.3%
CloudBurst - Raw CPU Performance Native (1 DN, 1 NM) VM per node 7.1%

MR-MSPolygraph - Map/Reduce Task Scheduling & Data Replication Native (2 DN, 2 NM) VM per socket 2.4%
Self-join - Map/Reduce Task Scheduling & Data Replication Native (2 DN, 2 NM) VM per socket 8.7%

Table 3: Evaluation Summary of Benchmarks and Applications

performance is the main factor for this application. Although Na-
tive performance is the best in most cases, the overhead with the
VM modes is minimal.

5. RELATED WORK
I/O virtualization technologies have been widely studied and eval-

uated under different scenarios. Studies [28], [11] present perfor-
mance evaluations of different software-based approaches using the
Xen virtualization environment [12]. There have been several stud-
ies [18], [26], [29] that demonstrate the superiority of SR-IOV as
compared to software-based approaches for Ethernet and Infini-
Band networks. However, there are relatively few studies which
focus on SR-IOV, InfiniBand and Big Data.

Fadika et al. [19] explore the performance of Hadoop for data
intensive scientific applications with IPoIB. They present the im-
pact of network, file system and programming modes on applica-
tion performance. Another study by Saxena et al. [33] presents
an in-depth study of Hadoop and RDMA-Hadoop. They consider
performance trade-offs when using SSDs for data storage as com-
pared to HDDs. Jose et al. [24] and Tatineni et al. [38] evaluate the
performance of MPI collectives and point-to-point operations on
SR-IOV-enabled InfiniBand clusters. Results show that by using
SR-IOV, near native performance can be achieved. A white paper
by VMWare [13] presents a benchmarking case study of Hadoop
on virtual machines. Their results show that in some cases, by tun-
ing the number of VMs per node, better than native performance
can be achieved.

None of the studies mentioned before present systematic evalu-
ations for Big Data applications using SR-IOV on InfiniBand net-
works. Therefore, our study is unique in terms of providing a com-
prehensive performance evaluation of Hadoop in a virtualized clus-
ter environment using SR-IOV and InfiniBand.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented performance evaluation results of

running Big Data workloads on SR-IOV-enabled virtualized In-
finiBand clusters. We explored different dimensions for evaluating
performance such as virtual machine configuration, data size, type
of communication mode, and type of workload. We also presented
system performance evaluation for some cases to gain deeper in-
sight into the performance characteristics of these workloads.

Our experimental evaluations show that the performance of Big
Data workloads and applications over SR-IOV with InfiniBand is
comparable to that of native InfiniBand hardware, with an over-
head of less than 15%. Also, by carefully selecting the right virtual
machine configuration mode, we can get near native performance
and in some cases even better than native performance for SR-IOV
over InfiniBand. In the future, we plan to evaluate with larger data
and cluster sizes with more diverse workloads. We also plan to
use more Big Data benchmarks and applications to carry out addi-
tional performance evaluations on SR-IOV-enabled virtualized In-
finiBand clusters.
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